source("mSHAP/00a_functions_10_vars.R")
# Load Libraries
library(tictoc)
library(ggplot2)
library(dplyr)
library(reticulate)
#### First Simulation ----
# Create a data frame of values to map across
eqns <- list(
y1 = c(
"rowSums(X)",
"x1 - x2 + x3 - x4 + x5 - x6 +x7 - x8 + x9 - x10"
),
y2 = c(
"x1 * x2 + x3*x4 + x5*x6 + (x7*x8)/(x9 - x10)",
"(x1 + x2 + x3 + x4 + x5) / (x6 *x7 * x8 * x9 * x10)",
"x5 + x10",
"exp(x1 + x2 + x3 + x4 + x5) - (x6 +x7 + x8 + x9 + x10)"
),
theta1 = seq(0.5, 20.5, by = 5),
theta2 = seq(1, 50, by = 10)
) %>%
expand.grid(stringsAsFactors = FALSE)
# simulate mSHAP and kernelSHAP on all rows of the created data frame
tic("big one")
all_tests <- purrr::pmap_dfr(
.l = eqns,
.f = test_multiplicative_shap,
sample = 100L
)
toc() # 16542.71 seconds (~4.6 hours)
# Write data to file, include code to read it back in again
readr::write_csv(all_tests, "mSHAP/all_tests_results_10_vars.csv")
all_tests <- readr::read_csv("mSHAP/all_tests_results_10_vars.csv")
#### Distribute Alpha Winner ----
all_tests %>%
group_by(method) %>%
summarise(mean_score = mean(score)) %>%
ungroup() %>%
arrange(desc(mean_score)) # weighted_abs is the best for the score
all_tests %>%
group_by(method) %>%
summarise(mean_dir_con = mean(direction_contrib)) %>%
ungroup() %>%
arrange(desc(mean_dir_con)) # weighted abs is the best for the direction
all_tests %>%
group_by(method) %>%
summarise(mean_rel_val_con = mean(relative_mag_contrib)) %>%
ungroup() %>%
arrange(desc(mean_rel_val_con)) # weighted abs is the best for the relative magnitude
all_tests %>%
group_by(method) %>%
summarise(mean_rank_con = mean(rank_contrib)) %>%
ungroup() %>%
arrange(desc(mean_rank_con)) # weighted abs is the best for the rank contribution
all_tests %>%
group_by(method) %>%
summarise(mean_mae = mean(mae)) %>%
ungroup() %>%
arrange(mean_mae) # uniform is the best for the mean_mae
all_tests %>%
group_by(method) %>%
summarise(pct_same_sign = mean(pct_same_sign)) %>%
ungroup() %>%
arrange(desc(pct_same_sign)) # weighted_abs is the best with the pct same sign
all_tests %>%
group_by(method) %>%
summarise(pct_same_rank = mean(pct_same_rank)) %>%
ungroup() %>%
arrange(desc(pct_same_rank)) # weighted squared is the best with the pct same rank (just .0005 ahead of weighted abs)
# A summary of all metrics
summary <- all_tests %>%
group_by(method) %>%
summarise(
mean_score = mean(score),
mean_dir_con = mean(direction_contrib),
mean_rel_val_con = mean(relative_mag_contrib),
mean_rank_con = mean(rank_contrib),
pct_same_sign = mean(pct_same_sign),
pct_same_rank = mean(pct_same_rank)
) %>%
ungroup() %>%
arrange(desc(mean_score))
View(summary)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.