context("ZDP Tests")
test_that("Test Iteration Errors", {
set.seed(1)
n<-200 ## generate from clustered, skewed, data distribution
d <- data.frame(y = rnorm(n), x = rnorm(n))
d$y[1:30] <- 0
expect_error( ZDPMix(d_train = d, formula = y ~ x, burnin=200, iter=100) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, burnin=200, iter=200) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, burnin=-200, iter=-200) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, burnin=1.5, iter=4.5) )
d <- data.frame(y = rnorm(n), x = rnorm(n))
expect_error( ZDPMix(d_train = d, formula = y ~ x, burnin=100, iter=200) )
})
test_that("Test Init K Errors", {
set.seed(1)
n<-200 ## generate from clustered, skewed, data distribution
d <- data.frame(y = rnorm(n), x = rnorm(n))
d$y[1:30] <- 0
expect_error( ZDPMix(d_train = d, formula = y ~ x, init_k = -10) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, init_k = 1.5) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, init_k = 300) )
expect_error( ZDPMix(d_train = d, formula = y ~ x, init_k = 'test') )
expect_error( ZDPMix(d_train = d, formula = y ~ x, init_k = c(1,2)) )
})
test_that("Test d_train inputs", {
set.seed(1)
n<-200 ## generate from clustered, skewed, data distribution
d <- data.frame(y = rnorm(n), x = rnorm(n), z=sample(c(1,2), size = n, replace = T))
d$y[1:30] <- 0
expect_error( ZDPMix(d_train = d, formula = y ~ x + z, init_k = 10) )
expect_error( ZDPMix(d_train = d, formula = y ~ x + z + A, init_k = 10) )
expect_error( ZDPMix(d_train = data.frame(), formula = y ~ x + z + A, init_k = 10) )
})
test_that("Test d_test inputs", {
set.seed(1)
n<-50 ## generate from clustered, skewed, data distribution
d <- data.frame(y = rnorm(n), x = rnorm(n), z=sample(c(1,0), size = n, replace = T))
d$y[1:10] <- 0
n<-50 ## generate from clustered, skewed, data distribution
dt <- data.frame(y = rnorm(n), x = rnorm(n), z=sample(c(1,0), size = n, replace = T))
dt$y[1:10] <- 0
expect_error( ZDPMix(d_train = d, d_test = dt[,-2], formula = y ~ x + z, init_k = 10) )
expect_error( ZDPMix(d_train = d, d_test = data.frame(), formula = y ~ x + z + A, init_k = 10) )
})
test_that("Test ZDP outputs", {
set.seed(1)
n<-50 ## generate from clustered, skewed, data distribution
d <- data.frame(y = rnorm(n), x = rnorm(n), z=sample(c(1,0), size = n, replace = T))
d$y[1:10] <- 0
n<-30 ## generate from clustered, skewed, data distribution
dt <- data.frame(y = rnorm(n), x = rnorm(n), z=sample(c(1,0), size = n, replace = T))
dt$y[1:10] <- 0
res <- ZDPMix(d_train = d, d_test = dt, formula = y ~ x + z, init_k = 10)
expect_length( res, 2 )
expect_length( res$cluster_inds, 2 )
expect_length( res$predictions, 2 )
expect_equal( dim(res$predictions$train), c(50, 900) )
expect_equal( dim(res$predictions$test), c(30, 900) )
expect_equal( dim(res$cluster_inds$train), c(50, 900) )
expect_equal( dim(res$cluster_inds$test), c(30, 900) )
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.