Description Usage Arguments References See Also Examples
This function uses the DESeq2
independent filtering method to increase detection power in high throughput gene expression studies.
1 | independentFiltering(object, filter, objectType = c("edgeR", "limma"))
|
object |
Either a |
filter |
The characteristic to use for filtering, usually a measure of normalized mean expression for the features. |
objectType |
Either |
Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550, dec 2014.
1 2 3 4 5 6 7 8 9 10 11 12 | library(limma)
data(islamEset,package="zingeR")
islam=exprs(islamEset)[1:2000,]
design=model.matrix(~pData(islamEset)[,1])
d=DGEList(islam)
nf=calcNormFactors(islam)
y=zeroWeightedVoom(d,design,nf=nf,maxit=200)
fit=lmWeightedFit(y,design)
fit=eBayes(fit)
tt=topTable(fit,coef=2,sort.by="none",number=nrow(fit))
baseMean=unname(rowMeans(sweep(d$counts,2,nf,FUN="*")))
ttFiltered=independentFiltering(tt,filter=baseMean, objectType="limma")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.