#
# pb_update_one_constrained <-
# function(constr_gradient_term, # alpha root-n grad l-star - grad l
# H2dot_transp_theta_hat,
# #H2dot_n^Ttheta^hat %*%
# #rbind(curr_theta_const - theta_const_mle,
# #-theta_var_mle)
# # where theta_var is (simplex-constrained) parameter to be optimized
# # over, and theta_const is all other parameters (held constant in
# # this step)
# H22n, #submatrix of criterion hessian corresp. to theta_var
# curr_theta_var,
# curr_theta_const,
# theta_hat_var,
# theta_hat_const
# ){
#
# #directly use auglag - no simpl_auglag_fnnls
# # prox_criterion <- function(theta_var){
# # theta_diff <- ( rbind(curr_theta_const,
# # x) -
# # rbind(theta_hat_const,
# # theta_hat_var))
# # gr_term <- constr_gradient_term %*%theta_diff
# # hess_term <- t(theta_diff)%*%H22n%*%theta_diff
# # return(as.numeric(gr_term + 0.5*hess_term))
# # }
# #
# #
# # simpl_auglag_fnnls(x = curr_theta_var,
# # fn = prox_criterion, #function of x to optimize
# # xhess = H22n, #hessian at x
# # xgrad = , #gradient at x
# # lambda, #penalty parameters
# # nu = 1, #starting lagrangian penalty
# # mu = 1, #starting augmented lagrangian penalty
# # constraint_tolerance = 1e-10, #sum-to-one constraint tolerance
# # maxit = 100 # maximum number of iterations (outer loop)
# #
# # )
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.