# # # # # test_that("multiplication works", {
# # # # #
# # # # n <- 10
# # # # sim_p_10 <- numeric(100)
# # # # set.seed(4939323)
# # # # for(sim in 1:100){
# # # # print(paste("Simulation ", sim, sep = "", collapse = ""))
# # # # W <- simulate_simple_data(matrix(0, nrow = 1, ncol = 2),
# # # # distrib = "nb10",
# # # # n = n,
# # # # gamma_mean = 11)
# # # #
# # # # fitted_model <- fit_simple_model(W,
# # # # B_fixed_at_zero = FALSE,
# # # # reweight = TRUE)
# # # #
# # # # null_param <- fitted_model
# # # # null_param$B[] <- 0
# # # # null_param$B_fixed_indices[] <- TRUE
# # # #
# # # # boot_fit <- bootstrap_lrt(W = W,
# # # # fitted_model = fitted_model,
# # # # null_param = null_param,
# # # # n_boot = 100,
# # # # m = n^(3/4),
# # # # recalculate_W0 = FALSE,
# # # # parallelize = TRUE,
# # # # ncores = 7,
# # # # save_models = FALSE)
# # # #
# # # # sim_p_10[sim] <- boot_fit$boot_pval
# # # #
# # # # print(sim_p_10[sim])
# # # # hist(boot_fit$boot_lr_stats,breaks = 7)
# # # # abline(v = boot_fit$observed_lr_stat, col = "red")
# # # #
# # # # }
# # # # #
# # # # qs <- seq(0.01,.99,by = .01)
# # # # #
# # # # plot(qs, sapply(qs,function(k) quantile(sim_p_10,k)), type = "s",
# # # # ylim = c(0,1),
# # # # xlim = c(0,1))
# # # # points(qs, sapply(qs,function(k) quantileCI(sim_p_10,k,
# # # # method = "asymptotic")$conf.int[1]),
# # # # type = "s",lty = 2)
# # # # points(qs, sapply(qs,function(k) quantileCI(sim_p_10,k,
# # # # method = "asymptotic")$conf.int[2]),
# # # # type = "s",lty = 2)
# # # # abline(a = 0, b = 1, lty = 2)
# # # ################################ error in how weights are assigned?
# n <- 25
# sim_p_25 <- numeric(1000)
# sim_p_25_weighted <- numeric(1000)
# qs <- seq(0,1,by = .01)
# set.seed(4939323)
# boot_fits <- vector(1000,mode = "list")
# boot_fits_weighted <- boot_fits
# for(sim in 1:1000){
# print(paste("Simulation ", sim, sep = "", collapse = ""))
# W <- simulate_simple_data(matrix(c(0,0), nrow = 1, ncol = 2),
# distrib = "nb10",
# n = n,
# gamma_mean = 11)
#
# fitted_model <- fit_simple_model(W = W,
# B_fixed_at_zero = FALSE,
# reweight = FALSE)
#
# null_param <- fitted_model
# null_param$B[] <- 0
# null_param$B_fixed_indices[] <- TRUE
#
# boot_fit <- bootstrap_lrt(W = W,
# fitted_model = fitted_model,
# null_param = null_param,
# n_boot = 1000,
# m = sqrt(m),
# recalculate_W0 = FALSE,
# parallelize = TRUE,
# ncores = 5,
# save_models = FALSE)
#
# boot_fits[[sim]] <- boot_fit
#
# sim_p_25[sim] <- boot_fit$boot_pval
#
# fitted_model_weighted <- fit_simple_model(W = W,
# B_fixed_at_zero = FALSE,
# reweight = TRUE)
#
# null_param <- fitted_model_weighted
# null_param$B[] <- 0
# null_param$B_fixed_indices[] <- TRUE
#
# boot_fit_weighted <- bootstrap_lrt(W = W,
# fitted_model = fitted_model_weighted,
# null_param = null_param,
# n_boot = 1000,
# m = sqrt(m),
# recalculate_W0 = FALSE,
# parallelize = TRUE,
# ncores = 5,
# save_models = FALSE)
#
# boot_fits_weighted[[sim]] <- boot_fit_weighted
#
# sim_p_25_weighted[sim] <- boot_fit_weighted$boot_pval
#
# print(sim_p_25[sim])
# print(sim_p_25_weighted[sim])
#
#
# plot(qs,sapply(qs, function(k) quantile(sim_p_25[1:sim],k)),
# type = "s",
# xlim = c(0,1),
# ylim = c(0,1))
#
# lines(qs,sapply(qs, function(k) quantile(sim_p_25_weighted[1:sim],k)),
# type = "s",
# xlim = c(0,1),
# ylim = c(0,1),
# col = "red")
#
# abline(a = 0, b = 1, lty = 2)
#
#
#
# }
#
# qs <- seq(0,1,by = .01)
# #
# plot(qs, sapply(qs,function(k) quantile(sim_p_25,k)), type = "s")
# abline(a = 0, b = 1, lty = 2)
# #
# # boot_lrs <- lapply(1:100, function(k) boot_fits[[k]]$boot_lr_stats)
# # obs_lrs <- sapply(1:100, function(k) boot_fits[[k]]$observed_lr_stat)
# # plot(1:100, log(sapply(1:100, function(k) median(boot_lrs[[k]]))/obs_lrs))
# # abline(a = 0, b= 1, lty = 2)
# # })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.