test_that("We are able to fit a simulation model (Poisson likelihood) to
Poisson simulation data", {
W <- simulate_paper_data(n = 1,
J = 5,
B_multiplier = 1,
distrib = "Poisson",
seed = 0)
fitted.model <- try(fit_simulation_model(W,"Poisson"))
expect_type(fitted.model,"list")
})
test_that("We are able to fit a simulation model (Poisson likelihood) to
negative binomial simulation data", {
W <- simulate_paper_data(n = 1,
J = 5,
B_multiplier = 1,
distrib = "NB",
seed = 0)
fitted.model <- try(fit_simulation_model(W,"Poisson"))
expect_type(fitted.model,"list")
})
test_that("We are able to fit a simulation model (Poisson likelihood)
to Poisson simulation data", {
W <- simulate_paper_data(n = 1,
J = 5,
B_multiplier = 1,
distrib = "Poisson",
seed = 0)
fitted.model <- try(fit_simulation_model(W,"reweighted_Poisson"))
expect_type(fitted.model,"list")
})
test_that("We are able to fit a simulation model (reweighted Poisson likelihood) to
negative binomial simulation data", {
W <- simulate_paper_data(n = 1,
J = 5,
B_multiplier = 1,
distrib = "NB",
seed = 0)
fitted.model <- try(fit_simulation_model(W,"reweighted_Poisson",
return_variance= TRUE))
expect_type(fitted.model,"list")
# fitted.model$variance_function %>%
# ggplot() +
# geom_point(aes(x= mean, y = squerror),
# size = 0.5) +
# geom_line(aes(x = mean, y = estd_var),
# color = "red") +
# theme_bw()+
# scale_y_sqrt() +
# scale_x_sqrt()
})
test_that("We get different estimates from Poisson and
reweighted Poisson estimators fit to negative binomial data", {
W <- simulate_paper_data(n = 3,
J = 20,
B_multiplier = 1,
distrib = "NB",
seed = 0)
poisson_fit <- try(fit_simulation_model(W,"Poisson"))
reweighted_fit <- try(fit_simulation_model(W,"reweighted_Poisson",
return_variance = TRUE))
expect_true(
mean(abs(poisson_fit$varying$value - reweighted_fit$varying$value))
>0.01)
#
#
# poisson_cis <- bootstrap_ci(W,
# fitted_model = poisson_fit,
# n_boot = 100,
# verbose= TRUE,
# parallelize = TRUE)
#
# reweighted_cis <- bootstrap_ci(W,
# fitted_model = reweighted_fit,
# n_boot = 100,
# verbose = TRUE,
# parallelize = TRUE
# )
#
# poisson_cis$ci$method <- "Poisson"
# reweighted_cis$ci$method <- "Reweighted"
#
# rbind(poisson_cis$ci,
# reweighted_cis$ci) %>%
# dplyr::filter(param == "B") %>%
# ggplot() +
# geom_errorbar(aes(x = j, ymin = lower_ci, ymax= upper_ci, color = method),
# position = position_dodge(0.5)) +
# facet_wrap(~k)+
# theme_bw()
#
# rbind(poisson_cis$ci,
# reweighted_cis$ci) %>%
# dplyr::group_by(param, method) %>%
# dplyr::summarize(mean_width = mean(abs(upper_ci - lower_ci))) %>%
# ggplot() +
# geom_point(aes(x= param, y = mean_width, color = method),
# position = position_dodge(0.5)) +
# scale_y_log10()+
# theme_bw()
#
# rbind(poisson_cis$ci,
# reweighted_cis$ci) %>%
# mutate(width = upper_ci - lower_ci) %>%
# filter(param == "P_tilde") %>%
# select(param, j, method, width) %>%
# pivot_wider(values_from = width, names_from = method) %>%
# ggplot(aes(x = j, y = Poisson/Reweighted)) +
# geom_point() +
# theme_bw() +
# scale_y_log10()
#
#
#
# reweighted_fit$variance_function %>%
# ggplot() +
# geom_point(aes(x= mean,y = squerror)) +
# geom_line(aes(x = mean,y = estd_var),color="red") +
# scale_y_log10() +
# scale_x_log10() +
# theme_bw()
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.