#' @title Prevalence Calculations within Time Steps
#'
#' @description This module calculates demographic, transmission, and clinical
#' statistics at each time step within the simulation.
#'
#' @inheritParams aging_camplc
#'
#' @details
#' Summary statistic calculations are of two broad forms: prevalence and
#' incidence. This function establishes the summary statistic vectors for both
#' prevalence and incidence at time 1, and then calculates the prevalence
#' statistics for times 2 onward. Incidence statistics (e.g., number of new
#' infections or deaths) are calculated within the modules as they depend on
#' vectors that are not stored external to the module.
#'
#' @return
#' This function returns the \code{dat} object with an updated summary of current
#' attributes stored in \code{dat$epi}.
#'
#' @keywords module msm
#'
#' @export
#'
prevalence_msm <- function(dat, at) {
active <- dat$attr$active
race <- dat$attr$race
status <- dat$attr$status
prepStat <- dat$attr$prepStat
debuted <- dat$attr$debuted
asmm <- dat$attr$asmm
age <- floor(dat$attr$age)
nsteps <- dat$control$nsteps
rNA <- rep(NA, nsteps)
if (at == 1) {
dat$epi$num <- rNA
dat$epi$num.B <- rNA
dat$epi$num.W <- rNA
dat$epi$num.asmm <- rNA
dat$epi$num.msm <- rNA
dat$epi$num.age18 <- rNA
dat$epi$num.deb <- rNA
dat$epi$num.asmm.deb <- rNA
dat$epi$num.age18.deb <- rNA
dat$epi$s.num <- rNA
dat$epi$i.num <- rNA
dat$epi$i.num.B <- rNA
dat$epi$i.num.W <- rNA
dat$epi$i.num.msm <- rNA
dat$epi$i.num.asmm <- rNA
dat$epi$i.num.age18 <- rNA
dat$epi$i.prev <- rNA
dat$epi$i.prev.B <- rNA
dat$epi$i.prev.W <- rNA
dat$epi$i.prev.msm <- rNA
dat$epi$i.prev.asmm <- rNA
dat$epi$i.prev.age18 <- rNA
dat$epi$incid <- rNA
dat$epi$incid.msm <- rNA
dat$epi$incid.asmm <- rNA
dat$epi$debuted <- rNA
dat$epi$debuted.asmm <- rNA
dat$epi$prepCurr <- rNA
dat$epi$prepCurr.msm <- rNA
dat$epi$prepCurr.asmm <- rNA
dat$epi$prepEver <- rNA
dat$epi$prepCov <- rNA
dat$epi$prepCov.asmm <- rNA
dat$epi$prepCov.msm <- rNA
dat$epi$prepCov.adol.naive <- rNA
dat$epi$prepCov.adol.exp <- rNA
dat$epi$prepElig <- rNA
dat$epi$prepStart <- rNA
dat$epi$i.num.prep0 <- rNA
dat$epi$i.num.prep1 <- rNA
dat$epi$cprob.always.pers <- rNA
dat$epi$cprob.always.inst <- rNA
dat$epi$mean.trans <- rNA
dat$epi$mean.trans.prep <- rNA
dat$epi$mean.trans.nprep <- rNA
dat$epi$incid.cai <- rNA
dat$epi$incid.uai <- rNA
dat$epi$incid.cai.perc <- rNA
dat$epi$incid.msm <- rNA
dat$epi$incid.asmm <- rNA
}
dat$epi$num[at] <- sum(active == 1, na.rm = TRUE)
dat$epi$num.B[at] <- sum(active == 1 & race == "B", na.rm = TRUE)
dat$epi$num.W[at] <- sum(active == 1 & race == "W", na.rm = TRUE)
dat$epi$num.asmm[at] <- sum(active == 1 & asmm == 1, na.rm = TRUE)
dat$epi$num.msm[at] <- sum(active == 1 & asmm == 0, na.rm = TRUE)
dat$epi$num.age18[at] <- sum(active == 1 & age == 18, na.rm = TRUE)
dat$epi$num.deb[at] <- sum(active == 1 & debuted == 1, na.rm = TRUE)
dat$epi$debuted[at] <- sum(active == 1 & debuted == 1, na.rm = TRUE)
dat$epi$debuted.asmm[at] <- sum(active == 1 & debuted == 1 & asmm == 1, na.rm = TRUE)
dat$epi$num.asmm.deb[at] <- sum(active == 1 & debuted == 1 & asmm == 1, na.rm = TRUE)
dat$epi$num.age18.deb[at] <- sum(active == 1 & debuted ==1 & age == 18, na.rm = TRUE)
dat$epi$s.num[at] <- sum(active == 1 & status == 0, na.rm = TRUE)
dat$epi$i.num[at] <- sum(active == 1 & status == 1, na.rm = TRUE)
dat$epi$i.num.B[at] <- sum(active == 1 & status == 1 & race == "B", na.rm = TRUE)
dat$epi$i.num.W[at] <- sum(active == 1 & status == 1 & race == "W", na.rm = TRUE)
dat$epi$i.num.msm[at] <- sum(active == 1 & status == 1 & asmm == 0, na.rm = TRUE)
dat$epi$i.num.asmm[at] <- sum(active == 1 & status == 1 & asmm == 1, na.rm = TRUE)
dat$epi$i.num.age18[at] <- sum(active == 1 & status == 1 & age == 18, na.rm = TRUE)
dat$epi$i.num.asmm.deb[at] <- sum(active == 1 & debuted == 1 & status == 1 & asmm == 1, na.rm = TRUE)
dat$epi$i.num.age18.deb[at] <- sum(active == 1 & debuted ==1 & status == 1 & age == 18, na.rm = TRUE)
dat$epi$i.prev[at] <- dat$epi$i.num[at] / dat$epi$num[at]
dat$epi$i.prev.B[at] <- dat$epi$i.num.B[at] / dat$epi$num.B[at]
dat$epi$i.prev.W[at] <- dat$epi$i.num.W[at] / dat$epi$num.W[at]
dat$epi$prepCurr[at] <- sum(active == 1 & prepStat == 1, na.rm = TRUE)
dat$epi$prepCurr.msm[at] <- sum(active == 1 & prepStat == 1 & asmm == 0, na.rm = TRUE)
dat$epi$prepCurr.asmm[at] <- sum(active == 1 & prepStat == 1 & asmm == 1, na.rm = TRUE)
dat$epi$prepElig.msm[at] <- sum(active == 1 & dat$attr$prepElig == 1, na.rm = TRUE)
dat$epi$prepElig.asmm[at] <- sum(active == 1 & dat$attr$prepElig.asmm == 1, na.rm = TRUE)
dat$epi$prepEver[at] <- sum(active == 1 & dat$attr$prepEver == 1, na.rm = TRUE)
dat$epi$i.num.prep0[at] <- sum(active == 1 & (is.na(prepStat) | prepStat == 0) & status == 1, na.rm = TRUE)
dat$epi$i.num.prep1[at] <- sum(active == 1 & prepStat == 1 & status == 1, na.rm = TRUE)
dat$epi$i.prev.prep0[at] <- dat$epi$i.num.prep0[at] /
sum(active == 1 & (is.na(prepStat) | prepStat == 0), na.rm = TRUE)
if (at == 1) {
dat$epi$i.prev.prep1[1] <- 0
} else {
dat$epi$i.prev.prep1[at] <- dat$epi$i.num.prep1[at] / sum(active == 1 & prepStat == 1, na.rm = TRUE)
}
dat$epi$i.prev.msm[at] <- sum(active == 1 & status ==1 & asmm == 0, na.rm = TRUE) / dat$epi$num.msm[at]
dat$epi$i.prev.asmm[at] <- sum(active == 1 & status ==1 & debuted == 1 & asmm == 1, na.rm = TRUE) / dat$epi$num.asmm.deb[at]
dat$epi$i.prev.age18[at] <- sum(active == 1 & status ==1 & debuted == 1 & age == 18, na.rm = TRUE) / dat$epi$num.age18.deb[at]
return(dat)
}
#' @title Prevalence Module
#'
#' @description Module function to calculate and store summary statistics for
#' disease prevalence, demographics, and other epidemiological
#' outcomes.
#'
#' @inheritParams aging_het
#'
#' @keywords module het
#'
#' @export
#'
prevalence_het <- function(dat, at) {
status <- dat$attr$status
male <- dat$attr$male
age <- dat$attr$age
nsteps <- dat$control$nsteps
rNA <- rep(NA, nsteps)
# Initialize vectors
if (at == 1) {
dat$epi$i.num <- rNA
dat$epi$num <- rNA
dat$epi$i.num.male <- rNA
dat$epi$i.num.feml <- rNA
dat$epi$i.prev.male <- rNA
dat$epi$i.prev.feml <- rNA
dat$epi$num.male <- rNA
dat$epi$num.feml <- rNA
dat$epi$meanAge <- rNA
dat$epi$propMale <- rNA
dat$epi$si.flow <- rNA
dat$epi$si.flow.male <- rNA
dat$epi$si.flow.feml <- rNA
dat$epi$b.flow <- rNA
dat$epi$ds.flow <- dat$epi$di.flow <- rNA
}
dat$epi$i.num[at] <- sum(status == 1, na.rm = TRUE)
dat$epi$num[at] <- length(status)
dat$epi$i.num.male[at] <- sum(status == 1 & male == 1, na.rm = TRUE)
dat$epi$i.num.feml[at] <- sum(status == 1 & male == 0, na.rm = TRUE)
dat$epi$i.prev.male[at] <- sum(status == 1 & male == 1, na.rm = TRUE) /
sum(male == 1, na.rm = TRUE)
dat$epi$i.prev.feml[at] <- sum(status == 1 & male == 0, na.rm = TRUE) /
sum(male == 0, na.rm = TRUE)
dat$epi$num.male[at] <- sum(male == 1, na.rm = TRUE)
dat$epi$num.feml[at] <- sum(male == 0, na.rm = TRUE)
dat$epi$meanAge[at] <- mean(age, na.rm = TRUE)
dat$epi$propMale[at] <- mean(male, na.rm = TRUE)
return(dat)
}
whichVlSupp <- function(attr, param) {
which(attr$status == 1 &
attr$vlLevel <= log10(50) &
(attr$age - attr$ageInf) * (365 / param$time.unit) >
(param$vl.acute.topeak + param$vl.acute.toset))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.