## R codes in JSS aftgee; http://www.jstatsoft.org/v61/i11/}
## Codes with pkg(lss) and pkg(rms) are ignored
library(aftgee)
library(survival)
datgen <- function(n = 500, tau = .7) {
x1 <- rbinom(n, 1, 0.5)
x2 <- rnorm(n)
e <- rweibull(n, 1, 3)
T <- exp(2 + x1 + x2 + e)
cstime <- runif(n, 0, tau)
delta <- (T < cstime) * 1
Y <- pmin(T, cstime)
out <- data.frame(T = T, Y = Y, delta = delta, x1 = x1, x2 = x2)
}
set.seed(1)
mydata <- datgen()
## V1.0.0
## system.time(rk.srrMB <- aftsrr(Surv(Y, delta) ~ x1 + x2, data = mydata, variance = "MB"))
## system.time(rk.srrISMB <- aftsrr(Surv(Y, delta) ~ x1 + x2, data = mydata, variance = "ISMB"))
## Github version
system.time(rk.srrMB <- aftsrr(Surv(Y, delta) ~ x1 + x2, data = mydata, se = "MB"))
system.time(rk.srrISMB <- aftsrr(Surv(Y, delta) ~ x1 + x2, data = mydata, se = "ISMB"))
system.time(ls.sur <- survreg(Surv(Y, delta) ~ x1 + x2, data = mydata, dist = "lognormal"))
system.time(ls.gee <- aftgee(Surv(Y, delta) ~ x1 + x2, data = mydata))
##################################################################################
## National Wilms' tumor study
##################################################################################
data("nwtco", package = "survival")
nwtco$age <- nwtco$age/12
head(nwtco, 5)
set.seed(1)
## V1.0.0
## system.time(fit.IS <- aftsrr(Surv(edrel, rel) ~ histol + age,
## data = nwtco, variance = c("ISCF", "ISMB")))
system.time(fit.IS <- aftsrr(Surv(edrel, rel) ~ histol + age, data = nwtco, se = c("ISCF", "ISMB")))
summary(fit.IS)
table(nwtco$in.subcohort, nwtco$rel)
nwtco$in.casecohort <- (nwtco$in.subcohort | nwtco$rel == 1)
nwtco$hi <- 0
nwtco$hi <- ifelse(nwtco$in.casecohort & nwtco$rel == 1, 1, nwtco$hi)
nwtco$hi <- ifelse(nwtco$in.casecohort & nwtco$rel == 0, 5.93, nwtco$hi)
table(nwtco$hi)
## V1.0.0
## system.time(fit.gh <- aftsrr(Surv(edrel, rel) ~ histol + age,
## weights = hi, data = nwtco, variance = "ZLMB",
## subset = in.casecohort))
## system.time(fit.lk <- aftsrr(Surv(edrel, rel) ~ histol + age,
## weights = hi, data = nwtco, variance = "ZLMB", rankWeights = "logrank",
## subset = in.casecohort))
## system.time(fit.pw <- aftsrr(Surv(edrel, rel) ~ histol + age,
## weights = hi, data = nwtco, variance = "ZLMB", rankWeights = "PW",
## method = "monosm", subset = in.casecohort))
system.time(fit.gh <- aftsrr(Surv(edrel, rel) ~ histol + age,
weights = hi, data = nwtco, se = "ZLMB", subset = in.casecohort))
system.time(fit.lk <- aftsrr(Surv(edrel, rel) ~ histol + age,
weights = hi, data = nwtco, se = "ZLMB", rankWeights = "logrank",
subset = in.casecohort))
system.time(fit.pw <- aftsrr(Surv(edrel, rel) ~ histol + age,
weights = hi, data = nwtco, se = "ZLMB", rankWeights = "PW",
eqType = "mis", subset = in.casecohort))
summary(fit.gh)
summary(fit.lk)
summary(fit.pw) ## different results b/c different tol
summary(aftsrr(Surv(edrel, rel) ~ histol + age, weights = hi, data = nwtco,
rankWeights = "GP", eqType = "mis", subset = in.casecohort))
summary(aftsrr(Surv(edrel, rel) ~ histol + age, weights = hi, data = nwtco,
rankWeights = "PW", eqType = "mis", subset = in.casecohort))
##################################################################################
## Kidney catheter data
##################################################################################
data("kidney", package = "survival")
set.seed(123)
fit.ind <- aftgee(Surv(time, status) ~ age + sex, id = id, data = kidney)
fit.ex <- aftgee(Surv(time, status) ~ age + sex, id = id, data = kidney, corstr = "ex")
summary(fit.ind)
summary(fit.ex)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.