context("Test current vs old mr.mash implementations")
test_that("Current and old mr.mash return the same results",{
###Set seed
set.seed(123)
###Simulate X and Y
n <- 100
p <- 10
###Set residual covariance
V <- rbind(c(1.0,0.2),
c(0.2,0.4))
###Set true effects
B <- matrix(c(-2, -2,
5, 5,
rep(0, (p-2)*2)), byrow=TRUE, ncol=2)
###Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
###Simulate Y from MN(XB, I_n, V) where I_n is an nxn identity
###matrix and V is the residual covariance
Y <- sim_mvr(X, B, V)
###Specify the mixture weights and covariance matrices for the
###mixture-of-normals prior
grid <- seq(1, 5)
S0mix <- compute_cov_canonical(ncol(Y), singletons=TRUE,
hetgrid=c(0, 0.25, 0.5, 0.75, 0.99), grid,
zeromat=TRUE)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Estimate residual covariance
V_est <- cov(Y)
###Fit with current implementation
capture.output(
fit_current <- mr.mash(X, Y, S0mix, w0, V_est, tol=1e-8, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=FALSE,
version="R"))
capture.output(
fit_current_rcpp <- mr.mash(X, Y, S0mix, w0, V_est, tol=1e-8,
update_w0=TRUE, update_w0_method="EM",
compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE, version="Rcpp"))
###Load old fit
fit_old <- readRDS("mr_mash_slow_implement_fit.rds")
###Tests
expect_equivalent(fit_current$mu1, fit_old$mu1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current$S1, fit_old$S1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current$w1, fit_old$w1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current$ELBO, fit_old$ELBO, tolerance = 9.99e-5, scale = 1)
expect_equivalent(fit_current_rcpp$mu1, fit_old$mu1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current_rcpp$S1, fit_old$S1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current_rcpp$w1, fit_old$w1, tolerance = 1e-6, scale = 1)
expect_equivalent(fit_current_rcpp$ELBO, fit_old$ELBO, tolerance = 9.99e-5, scale = 1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.