context("mr.mash with 1 or 2 thread(s) return the same results")
test_that("mr.mash with 1 or 2 thread(s) return the same results", {
###Set seed
set.seed(123)
###Simulate X and Y
n <- 100
p <- 10
###Set residual covariance
V <- rbind(c(1.0,0.2),
c(0.2,0.4))
###Set true effects
B <- matrix(c(-2, -2,
5, 5,
rep(0, (p-2)*2)), byrow=TRUE, ncol=2)
###Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
###Simulate Y from MN(XB, I_n, V) where I_n is an nxn identity
###matrix and V is the residual covariance
Y <- sim_mvr(X, B, V)
###Assign some missing values in Y
Y_miss <- Y
Y_miss[1:5, 1] <- NA
Y_miss[6:10, 2] <- NA
###Specify the mixture weights and covariance matrices for the
###mixture-of-normals prior
grid <- seq(1, 5)
S0mix <- compute_cov_canonical(ncol(Y), singletons=TRUE,
hetgrid=c(0, 0.25, 0.5, 0.75, 0.99), grid,
zeromat=TRUE)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Estimate residual covariance
V_est <- cov(Y)
###Compute quantities needed for mr.mash.rss
out <- compute_univariate_sumstats(X=X, Y=Y, standardize=FALSE, standardize.response=FALSE, mc.cores=1)
R <- cor(X)
X_colMeans <- colMeans(X)
Y_colMeans <- colMeans(Y)
###Fit with current implementation (1 thread)
capture.output(
fit_1 <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=TRUE,
verbose=FALSE, update_V=TRUE, nthreads=1))
fit_1$progress <- fit_1$progress[, -2] ##This line is needed to remove the timing column -->
##hopefully faster when using multiple threads
capture.output(
fit_1_miss <- mr.mash(X, Y_miss, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=TRUE,
verbose=FALSE, update_V=TRUE, nthreads=1))
fit_1_miss$progress <- fit_1_miss$progress[, -2] ##This line is needed to remove the timing column -->
##hopefully faster when using multiple threads
# fit_1_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
# w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE, standardize=TRUE,
# verbose=FALSE, update_V=TRUE, X_colmeans=X_colMeans, Y_colmeans=Y_colMeans,
# nthreads=1)
# fit_1_rss$progress <- fit_1_rss$progress[, -2] ##This line is needed to remove the timing column -->
##hopefully faster when using multiple threads
###Fit with current implementation (2 threads)
capture.output(
fit_2 <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=TRUE,
verbose=FALSE, update_V=TRUE, nthreads=2))
fit_2$progress <- fit_2$progress[, -2]
capture.output(
fit_2_miss <- mr.mash(X, Y_miss, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=TRUE,
verbose=FALSE, update_V=TRUE, nthreads=2))
fit_2_miss$progress <- fit_2_miss$progress[, -2]
# fit_2_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
# w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE, standardize=TRUE,
# verbose=FALSE, update_V=TRUE, X_colmeans=X_colMeans, Y_colmeans=Y_colMeans,
# nthreads=2)
# fit_2_rss$progress <- fit_2_rss$progress[, -2] ##This line is needed to remove the timing column -->
##hopefully faster when using multiple threads
###Test
expect_equal(fit_1, fit_2, tolerance=1e-10, scale=1)
expect_equal(fit_1_miss, fit_2_miss, tolerance=1e-10, scale=1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.