context("mr.mash and mr.mash.rss versions return same result")
test_that("mr.mash and mr.mash.rss return the same results", {
###Set seed
set.seed(123)
###Simulate X and Y
n <- 100
p <- 10
###Set residual covariance
V <- rbind(c(1.0,0.2),
c(0.2,0.4))
###Set true effects
B <- matrix(c(-2, -2,
5, 5,
rep(0, (p-2)*2)), byrow=TRUE, ncol=2)
###Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
###Simulate Y from MN(XB, I_n, V) where I_n is an nxn identity
###matrix and V is the residual covariance
Y <- sim_mvr(X, B, V)
###Specify the mixture weights and covariance matrices for the
###mixture-of-normals prior
grid <- seq(1, 5)
S0mix <- compute_cov_canonical(ncol(Y), singletons=TRUE,
hetgrid=c(0, 0.25, 0.5, 0.75, 0.99), grid,
zeromat=TRUE)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Estimate residual covariance
V_est <- cov(Y)
###Fit mr.mash
fit <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE)
fit$progress <- fit$fitted <- fit$pve <- fit$G <- NULL
fit_scaled <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=TRUE, verbose=FALSE, update_V=FALSE)
fit_scaled$progress <- fit_scaled$fitted <- fit_scaled$pve <- fit_scaled$G <- NULL
fit_V <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE)
fit_V$progress <- fit_V$fitted <- fit_V$pve <- fit_V$G <- NULL
fit_V_diag <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE,
update_V_method="diagonal")
fit_V_diag$progress <- fit_V_diag$fitted <- fit_V_diag$pve <- fit_V_diag$G <- NULL
fit_scaled_V <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=TRUE, verbose=FALSE, update_V=TRUE)
fit_scaled_V$progress <- fit_scaled_V$fitted <- fit_scaled_V$pve <- fit_scaled_V$G <- NULL
fit_scaled_V_declogBF <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=TRUE, verbose=FALSE, update_V=TRUE,
ca_update_order="decreasing_logBF")
fit_scaled_V_declogBF$progress <- fit_scaled_V_declogBF$fitted <- fit_scaled_V_declogBF$pve <- fit_scaled_V_declogBF$G <- NULL
###Fit mr.mash.rss
out <- compute_univariate_sumstats(X=X, Y=Y, standardize=FALSE, standardize.response=FALSE, mc.cores=1)
R <- cor(X)
X_colMeans <- colMeans(X)
Y_colMeans <- colMeans(Y)
fit_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE, X_colmeans=X_colMeans, Y_colmeans=Y_colMeans)
fit_rss$progress <- NULL
# fit_scaled_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
# w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE,
# standardize=TRUE, verbose=FALSE, update_V=FALSE,
# X_colmeans=X_colMeans, Y_colmeans=Y_colMeans)
# fit_scaled_rss$progress <- NULL
fit_V_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE,
X_colmeans=X_colMeans, Y_colmeans=Y_colMeans)
fit_V_rss$progress <- NULL
fit_V_diag_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE,
X_colmeans=X_colMeans, Y_colmeans=Y_colMeans,
update_V_method="diagonal")
fit_V_diag_rss$progress <- NULL
# fit_scaled_V_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
# w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE,
# standardize=TRUE, verbose=FALSE, update_V=TRUE,
# X_colmeans=X_colMeans, Y_colmeans=Y_colMeans)
# fit_scaled_V_rss$progress <- NULL
# fit_scaled_V_declogBF_rss <- mr.mash.rss(Bhat=out$Bhat, Shat=out$Shat, covY=V_est, R=R, n=n, S0=S0mix,
# w0=w0, V=V_est, update_w0=TRUE, compute_ELBO=TRUE,
# standardize=TRUE, verbose=FALSE, update_V=TRUE,
# ca_update_order="decreasing_logBF",
# X_colmeans=X_colMeans, Y_colmeans=Y_colMeans)
# fit_scaled_V_declogBF_rss$progress <- NULL
###Tests
expect_equal(unclass(fit), unclass(fit_rss), tolerance=1e-10, scale=1)
# expect_equal(unclass(fit_scaled), unclass(fit_scaled_rss), tolerance=1e-10, scale=1)
expect_equal(unclass(fit_V), unclass(fit_V_rss), tolerance=1e-10, scale=1)
expect_equal(unclass(fit_V_diag), unclass(fit_V_diag_rss), tolerance=1e-10, scale=1)
# expect_equal(unclass(fit_scaled_V), unclass(fit_scaled_V_rss), tolerance=1e-10, scale=1)
# expect_equal(unclass(fit_scaled_V_declogBF), unclass(fit_scaled_V_declogBF_rss), tolerance=1e-10, scale=1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.