context("mr.mash and mr_mash_simple return same result")
test_that("mr.mash and mr_mash_simple return the same results", {
###Set seed
set.seed(123)
###Simulate X and Y
n <- 100
p <- 10
r <- 2
###Set residual covariance
V <- rbind(c(1.0,0.2),
c(0.2,0.4))
###Set true effects
B <- matrix(c(-2, -2,
5, 5,
rep(0, (p-2)*2)), byrow=TRUE, ncol=2)
###Simulate X
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
X <- scale(X, center=TRUE, scale=FALSE)
###Simulate Y from MN(XB, I_n, V) where I_n is an nxn identity
###matrix and V is the residual covariance
Y <- sim_mvr(X, B, V)
###Assign some missing values in Y
Y_miss <- Y
Y_miss[1:5, 1] <- NA
Y_miss[6:10, 2] <- NA
###Specify the mixture weights and covariance matrices for the
###mixture-of-normals prior
grid <- seq(1, 5)
S0mix <- compute_cov_canonical(ncol(Y), singletons=TRUE,
hetgrid=c(0, 0.25, 0.5, 0.75, 0.99), grid,
zeromat=TRUE)
w0 <- rep(1/(length(S0mix)), length(S0mix))
###Initial value for the regression coefficients
B0 <- matrix(0,p,r)
###Estimate residual covariance
V_est <- cov(Y)
###Fit with mr.mash (R version)
capture.output(
fit <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE, version="R", mu1_init=B0))
capture.output(
fit_V <- mr.mash(X, Y, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE,
version="R", mu1_init=B0))
capture.output(
fit_miss <- mr.mash(X, Y_miss, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE, standardize=FALSE,
verbose=FALSE, update_V=FALSE, version="R", mu1_init=B0))
capture.output(
fit_V_miss <- mr.mash(X, Y_miss, S0mix, w0, V_est, update_w0=TRUE,
update_w0_method="EM", compute_ELBO=TRUE,
standardize=FALSE, verbose=FALSE, update_V=TRUE,
version="R", mu1_init=B0))
###Fit with mr_mash_simple
capture.output(
fit_simple <- mr_mash_simple(X, Y, V_est, lapply(S0mix, makePD, e=1e-8), w0, update_w0=TRUE,
verbose=FALSE, update_V=FALSE, B=B0))
capture.output(
fit_V_simple <- mr_mash_simple(X, Y, V_est, lapply(S0mix, makePD, e=1e-8), w0, update_w0=TRUE,
verbose=FALSE, update_V=TRUE, B=B0))
capture.output(
fit_miss_simple <- mr_mash_simple(X, Y_miss, V_est, lapply(S0mix, makePD, e=1e-8), w0, update_w0=TRUE,
verbose=FALSE, update_V=FALSE, B=B0))
capture.output(
fit_V_miss_simple <- mr_mash_simple(X, Y_miss, V_est, lapply(S0mix, makePD, e=1e-8), w0, update_w0=TRUE,
verbose=FALSE, update_V=TRUE, B=B0))
###Tests
expect_equivalent(fit$intercept, fit_simple$intercept, tolerance=1e-10, scale=1)
expect_equivalent(fit$mu1, fit_simple$B, tolerance=1e-10, scale=1)
expect_equivalent(fit$w0, fit_simple$w0, tolerance=1e-10, scale=1)
expect_equivalent(fit$progress$ELBO, fit_simple$ELBO, tolerance=1e-10, scale=1)
expect_equivalent(fit_V$intercept, fit_V_simple$intercept, tolerance=1e-10, scale=1)
expect_equivalent(fit_V$mu1, fit_V_simple$B, tolerance=1e-10, scale=1)
expect_equivalent(fit_V$w0, fit_V_simple$w0, tolerance=1e-10, scale=1)
expect_equivalent(fit_V$progress$ELBO, fit_V_simple$ELBO, tolerance=1e-10, scale=1)
expect_equivalent(fit_V$V, fit_V_simple$V, tolerance=1e-10, scale=1)
expect_equivalent(fit_miss$intercept, fit_miss_simple$intercept, tolerance=1e-10, scale=1)
expect_equivalent(fit_miss$mu1, fit_miss_simple$B, tolerance=1e-10, scale=1)
expect_equivalent(fit_miss$w0, fit_miss_simple$w0, tolerance=1e-10, scale=1)
expect_equivalent(fit_miss$progress$ELBO, fit_miss_simple$ELBO, tolerance=1e-10, scale=1)
expect_equivalent(fit_miss$Y, fit_miss_simple$Y, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$intercept, fit_V_miss_simple$intercept, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$mu1, fit_V_miss_simple$B, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$w0, fit_V_miss_simple$w0, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$progress$ELBO, fit_V_miss_simple$ELBO, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$Y, fit_V_miss_simple$Y, tolerance=1e-10, scale=1)
expect_equivalent(fit_V_miss$V, fit_V_miss_simple$V, tolerance=1e-10, scale=1)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.