#' Feature selection step using Boruta
#'
#' `step_select_boruta` creates a *specification* of a recipe step that selects a
#' subset of predictors using the Boruta feature selection approach.
#'
#' @param recipe A recipe object. The step will be added to the sequence of
#' operations for this recipe.
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See selections() for more details. For the tidy
#' method, these are not currently used.
#' @param outcome A character string with the name of the response variable to
#' use to calculate the feature importance scores.
#' @param role Not used by this step since no new variables are created.
#' @param trained A logical to indicate if the quantities for preprocessing have
#' been estimated.
#' @param exclude A character vector of predictor names that will be removed
#' from the data. This will be set when `prep()` is used on the recipe and
#' should not be set by the user.
#' @param options A list of options to pass to `Boruta::Boruta()`. The defaults
#' use Boruta's defaults. *Note* that `x` and `y` should not be passed here.
#' @param res The `Boruta::Boruta` object is stored here once this preprocessing
#' step has been trained by `prep.recipe()`.
#' @param skip A logical. Should the step be skipped when the recipe is baked by
#' bake.recipe()? While all operations are baked when prep.recipe() is run,
#' some operations may not be able to be conducted on new data (e.g.
#' processing the outcome variable(s)). Care should be taken when using skip =
#' TRUE as it may affect the computations for subsequent operations.
#' @param id A character string that is unique to this step to identify it.
#'
#' @return a `step_select_boruta` object.
#' @export
#' @examples
#' library(recipes)
#' library(parsnip)
#'
#' # load the example iris dataset
#' data(cells, package = "modeldata")
#'
#' # create a preprocessing recipe
#' rec <-
#' recipe(class ~ ., data = cells[, -1]) %>%
#' step_select_boruta(all_predictors(), outcome = "class")
#'
#' prepped <- prep(rec)
#'
#' preproc_data <- juice(prepped)
#' prepped
step_select_boruta <- function(
recipe,
...,
outcome = NULL,
role = "predictor",
trained = FALSE,
exclude = NULL,
options = list(pValue = 0.01, mcAdj = TRUE, maxRuns = 100),
res = NULL,
skip = FALSE,
id = recipes::rand_id("select_boruta")) {
recipes::recipes_pkg_check("Boruta")
recipes::add_step(
recipe,
step_select_boruta_new(
terms = recipes::ellipse_check(...),
trained = trained,
outcome = outcome,
role = role,
exclude = exclude,
options = options,
res = res,
skip = skip,
id = id
)
)
}
# wrapper around 'step' function that sets the class of new step objects
#' @importFrom recipes step
step_select_boruta_new <- function(terms, role, trained, outcome, exclude,
options, res, skip, id) {
recipes::step(
subclass = "select_boruta",
terms = terms,
role = role,
trained = trained,
outcome = outcome,
exclude = exclude,
options = options,
res = res,
skip = skip,
id = id
)
}
#' @export
prep.step_select_boruta <- function(x, training, info = NULL, ...) {
# translate the terms arguments
x_names <- recipes::terms_select(terms = x$terms, info = info)
y_name <- recipes::terms_select(x$outcome, info = info)
y_name <- y_name[1]
if (length(x_names) > 0) {
call <- rlang::call2(
.fn = "Boruta",
.ns = "Boruta",
x = rlang::quo(training[, x_names]),
y = rlang::quo(training[[y_name]]),
!!!x$options
)
res <- rlang::eval_tidy(call)
exclude <- names(res$finalDecision[res$finalDecision == "Rejected"])
} else {
exclude <- character()
}
step_select_boruta_new(
terms = x$terms,
trained = TRUE,
role = x$role,
outcome = y_name,
exclude = exclude,
options = x$options,
res = res,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_select_boruta <- function(object, new_data, ...) {
if (length(object$exclude) > 0) {
new_data <- new_data[, !colnames(new_data) %in% object$exclude]
}
as_tibble(new_data)
}
#' @export
print.step_select_boruta <- function(x, width = max(20, options()$width - 30), ...) {
cat("Boruta feature selection")
if(recipes::is_trained(x)) {
n <- length(x$exclude)
cat(paste0(" (", n, " excluded)"))
}
cat("\n")
invisible(x)
}
#' @rdname step_select_boruta
#' @param x A `step_select_boruta` object.
#' @export
tidy.step_select_boruta <- function(x, ...) {
if (recipes::is_trained(x)) {
res <- tibble(terms = x$exclude)
} else {
term_names <- recipes::sel2char(x$terms)
res <- tibble(terms = rlang::na_chr)
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.