SimInf_pmcmc-class | R Documentation |
"SimInf_pmcmc"
Class "SimInf_pmcmc"
model
The SimInf_model
object to estimate parameters
in.
priors
A data.frame
containing the four columns
parameter
, distribution
, p1
and
p2
. The column parameter
gives the name of the
parameter referred to in the model. The column
distribution
contains the name of the prior
distribution. Valid distributions are 'gamma', 'normal' or
'uniform'. The column p1
is a numeric vector with the
first hyperparameter for each prior: 'gamma') shape,
'lognormal') logmean, 'normal') mean, and 'uniform') lower
bound. The column p2
is a numeric vector with the
second hyperparameter for each prior: 'gamma') rate,
'lognormal') standard deviation on the log scale, 'normal')
standard deviation, and 'uniform') upper bound.
target
Character vector (gdata
or ldata
) that
determines if the pmcmc
method estimates parameters in
model@gdata
or in model@ldata
.
pars
Index to the parameters in target
.
n_particles
An integer with the number of particles (> 1) to use in the bootstrap particle filter.
data
A data.frame
holding the time series data for
the observation process.
chain
A matrix where each row contains logPost
,
logLik
, logPrior
, accept
, and the
parameters
for each iteration.
covmat
A named numeric (npars x npars)
matrix with
covariances to use as initial proposal matrix.
adaptmix
Mixing proportion for adaptive proposal.
adaptive
Controls when to start adaptive update.
pmcmc
and continue_pmcmc
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.