| matchedLandmarks | R Documentation |
Convert match output to landmarks in physical space
matchedLandmarks( matchObject, referenceImage, movingImage, patchSize, whichK = 1 )
matchObject |
object, the output of |
referenceImage |
the fixed image |
movingImage |
the image that will be matched to the fixed image |
patchSize |
size of patch features |
whichK |
which matched point set (e.g. 1 gives the best, 2 second best and so on) |
output list contains fixed and matched points
## Not run:
library( keras )
library( ANTsR )
layout( matrix(1:2,nrow=1) )
nP1 = 50
nP2 = 200
psz = 32
img <- ri( 1 ) %>% iMath( "Normalize" ) %>% resampleImage( c( 2, 2 ) )
img2 <- ri( 2 ) %>% iMath( "Normalize" ) %>% resampleImage( c( 2, 2 ) )
mask = randomMask( getMask( img ), nP1 )
mask2 = randomMask( getMask( img2 ), nP2 )
matchO = deepPatchMatch( img2, img, mask, mask2 )
mlm = matchedLandmarks( matchO, img, img2, c(psz,psz) )
ct = 0
mxct = 18
lmImage1 = img * 0
lmImage2 = img2 * 0
for ( k in 1:nrow( mlm$fixedPoints ) ) {
if ( ct < mxct ) {
pt1i = makePointsImage( matrix(mlm$fixedPoints[k,],ncol=2), img, radius = 2 ) * k
pt2i = makePointsImage( matrix(mlm$movingPoints[k,],ncol=2), img2, radius = 2 ) * k
lmImage1 = lmImage1 + pt1i
lmImage2 = lmImage2 + pt2i
}
ct = ct + 1
}
plot( img, lmImage1 )
plot( img2, lmImage2 )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.