rndr_: Render

Description Usage Arguments Details Value Examples

Description

countDigits Interne Function wird in Meanci2() verwendet

Formatiere von Zahlen nach dem APA-Style ( American Psychological Association ).

rndr_corr Correlations are reported with the degrees of freedom (which is N-2) in parentheses and the significance level: The two variables were strongly correlated, r(55) = .49, p < .01.

F-Wert rndr_F()

T-Wert rndr_T() T Tests are reported like chi-squares, but only the degrees of freedom are in parentheses. Following that, report the t statistic (rounded to two decimal places) and the significance level. There was a significant effect for gender, t(54) = 5.43, p < .001, with men receiving higher scores than women.

CFA Confirmatorische Faktoranalyse

Backhaus Multivariate Analysemethoden 11 AuflageSeite 383 GIF Goodness-of-Fit-Index >=.9

AGIF Adjusted-Goodness-of-Fit-Index

SRMR

Chisq_cfa: Moosbrugger, Kelava 2012 Testtheorie 2. Auflage Seite 339 CHISQ Chi-Quadrat/df 0,2, 3

RMSEA Root-Mean-Square-Error of Approximation 0, 0.050, 0.080

CFI Comparative-Fit-Index .970-1.00, .950-.969

NFI Normed-Fit-Index .950-1.00, .900-.949

rndr_percent() return character rndr_percent2()return data.frame Percentages are also most clearly displayed in parentheses with no decimal places: Nearly half (49

Usage

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
symbol_chi2(output = stp25output:::which_output())

countDigits(x)

rndr_(...)

rndr_median(m, iqr, digits = default_stp25("digits", "mittelwert"), ...)

rndr_median_quant(x, digits = default_stp25("digits", "mittelwert"), ...)

rndr_median_range(m, iqr, mn, mx, digits = default_stp25("digits",
  "mittelwert"), ...)

rndr_mean(m, s, digits = default_stp25("digits", "mittelwert"), ...)

rndr_mean_range(m, s, mn, mx, digits = default_stp25("digits", "mittelwert"),
  ...)

rndr_ods(x, digits = default_stp25("digits", "r"))

rndr_CI(ci, digits = default_stp25("digits", "r"),
  sep = default_stp25("sep_element"), sep_1 = default_stp25("brackets")[1],
  sep_2 = default_stp25("brackets")[2])

rndr_ods_CI(ci, digits = default_stp25("digits", "r"),
  sep = default_stp25("sep_element"), sep_1 = default_stp25("brackets")[1],
  sep_2 = default_stp25("brackets")[2])

rndr_mean_CI(m, ci, digits)

rndr_r(x, include.symbol = TRUE, ...)

rndr_r2(x, include.symbol = TRUE, ...)

rndr_r2pseudo(x, include.symbol = TRUE, ...)

rndr_corr(x, p, df)

rndr_df(df1, df2 = NULL)

rndr_F(F_val, df1, df2, p = NULL)

rndr_T(F_val, df1, p = NULL)

rndr_H(F_val, df1, p = NULL)

rndr_BP(F_val, df1, p = NULL)

rndr_DW(F_val, df1, p = NULL)

rndr_W(F_val, p = NULL)

rndr_U(F_val, p = NULL)

rndr_shapiro(F_val, p = NULL)

rndr_lm(F_val, df1, df2, p, r2, ar2)

rndr_X(x, df1, df2 = NULL, p = NULL)

rndr_Chisq(x, df, p)

rndr_Chisq_stars(x, p)

rndr_fischer(x, p)

rndr_gfi_cfa(x)

rndr_agfi_cfa(x)

rndr_rmsea_cfa(x)

rndr_Chisq_cfa(x, df = 1)

rndr_rmsea_cfa(x)

rndr_cfi_cfa(x)

rndr_nfi_cfa(x)

rndr_P(x, include.symbol = TRUE, include.bracket = FALSE,
  digits = default_stp25("digits", "p"), format = "f",
  drop0leading = !default_stp25("lead.zero", "p"), drop0trailing = FALSE,
  with.stars = options()$stp25$apa.style$p$with.stars,
  include.leading = include.symbol, include.trailing = FALSE,
  symbol.bracket = c("(", ")"), symbol.leading = c("p=", "p<"),
  symbol.trailing = "")

rndr_Stars(x, stars.value = default_stp25("stars.value", "p"),
  stars.symbols = default_stp25("stars.symbols", "p"))

rndr_Effect_Size(x, digits = default_stp25("digits", "r")[1],
  drop0leading = !default_stp25("lead.zero", "r"), ...)

rndr_Test_Statistic(x, digits = default_stp25("digits", "Fstat")[1],
  drop0leading = !default_stp25("lead.zero", "Fstat"), ...)

rndr_percent(x = n/sum(n, na.rm = TRUE) * 100, n = NULL,
  digits = default_stp25("digits", "prozent")[1],
  symbol.trailing = default_stp25("percentage_str", "prozent"),
  symbol.na = "n.a.", style = default_stp25("style", "prozent"),
  null_percent_sign = default_stp25("null_percent_sign", "prozent"),
  percent = TRUE, drop0leading = FALSE, return_as_vector = TRUE,
  decimal.mark = getOption("OutDec"), ...)

rndr_percent2(..., return_as_vector = FALSE)

Arguments

output

nur intern HTML oder Konsole

x

Obkekt oder vektor

...

alles an Format2()

m

Mittelwert

digits

Nachkommastellen

s, iqr

SD,IRQ (ein Wert)

ci

Vektor mit zwei Werten

sep, sep_1, sep_2

intern seperator

include.symbol, include.bracket

Formatierungs Optionen

df, df1, df2

Freiheitsgrade

F_val

Objekt aus einem Test

n

Anzahl

percent, style

Formatierung als Prozent oder als Prozent(Anzahl)

percentage_str, null_percent_sign

Formatierungs Optionen

Details

see: http://winvector.github.io/APAsig/APAsig.html http://my.ilstu.edu/~jhkahn/apastats.html https://web2.uconn.edu/writingcenter/pdf/Reporting_Statistics.pdf

Value

Character-String

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
countDigits(1.2345)
rndr_(1.234, 3)

 rndr_mean_range(1,2,3,4)
  rndr_mean (1,2 )
  rndr_median_range(1,2,3,4)
  rndr_median(1,2)
  rndr_CI(matrix(c(NA, 1:10, NA), ncol=2))

rndr_corr(-.548369,0.005896,55)
rndr_T(25.45, 45, .0045)

rndr_H(25.45, 45, .0045)

#capture.output(Hmisc::spearman2(pauli~g, data = rechentest))
rndr_gfi_cfa(c(1,.9,.89))
rndr_agfi_cfa(c(1,.9,.89))
rndr_rmsea_cfa(c(1,.9,.89))
rndr_Chisq_cfa(c(0,2,3,2.01,3.4))
rndr_rmsea_cfa(c(0, 0.050, 0.080, .051, .081) )
rndr_cfi_cfa(c(.970,1.00, .950-.969,.8))
rndr_nfi_cfa(c(.950, 1.00, .900,  .949))

rndr_P(c(1,.25,.08,0.05,0.01,0.0001))


#-- rndr_percent ------------

rndr_percent(c(.2568, 99, 0.02568), c(4, 569, 25), digits = 1)

stp4/stp25rndr documentation built on May 31, 2019, 10:50 p.m.