test_that("BFGS: gaussian, n>p case", {
library(SLOPE)
set.seed(754)
n = 100
p = 10
d <- randomProblem(n,p,response="gaussian")
nr <- ADMM(d$x, d$y, family="gaussian", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="gaussian",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: gaussian, n<p case", {
library(SLOPE)
set.seed(72)
n = 10
p = 20
d <- randomProblem(n,p,response="gaussian")
nr <- ADMM(d$x, d$y, family="gaussian", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="gaussian",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: binomial, n>p case", {
library(SLOPE)
set.seed(25)
n = 100
p = 10
d <- randomProblem(n,p,response="binomial")
nr <- ADMM(d$x, d$y, family="binomial", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="binomial",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: binomial, n<p case", {
library(SLOPE)
set.seed(157)
n = 10
p = 20
d <- randomProblem(n,p,response="binomial")
nr <- ADMM(d$x, d$y, family="binomial", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="binomial",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: poisson, n>p case", {
library(SLOPE)
set.seed(122)
n = 100
p = 10
d <- randomProblem(n,p,response="poisson")
nr <- ADMM(d$x, d$y, family="poisson", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="poisson",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: poisson, n<p case", {
library(SLOPE)
set.seed(351)
n = 10
p = 20
d <- randomProblem(n,p,response="poisson")
nr <- ADMM(d$x, d$y, family="poisson", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="poisson",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: multinomial, n>p case", {
library(SLOPE)
set.seed(5)
n = 100
p = 10
d <- randomProblem(n, p, response="multinomial", density = 0.5)
nr <- ADMM(d$x, d$y, family="multinomial", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="multinomial",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
test_that("BFGS: multinomial, n<p case", {
library(SLOPE)
set.seed(331)
n = 10
p = 20
d <- randomProblem(n, p, response="multinomial", density = 0.5)
nr <- ADMM(d$x, d$y, family="multinomial", alpha=c(1.0,0.005), opt_algo="nr")
bfgs <- ADMM(d$x, d$y, family="multinomial",alpha=c(1.0,0.005), opt_algo="bfgs")
expect_equivalent(coef(nr), coef(bfgs), tol = 1e-2)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.