| mae | R Documentation |
Mean absolute error (MAE)
mae(actuals, preds, na.rm = FALSE)
actuals |
A numeric vector of actual values. |
preds |
A numeric vector of prediction values. |
na.rm |
A logical value indicating whether actual and prediction pairs with at least one NA value should be ignored. |
In Machine and Deep Learning, MAE is also known as L1 loss function. In opposite to MSE, MAE is more robust to outliers.
Mean absolute error.
Other Metrics:
accuracy(),
cross_entropy(),
dice(),
entropy(),
erf(),
erfc(),
erfcinv(),
erfinv(),
gini_impurity(),
huber_loss(),
iou(),
log_cosh_loss(),
mape(),
mse(),
msle(),
quantile_loss(),
rmse(),
rmsle(),
rmspe(),
sse(),
stderror(),
vc(),
wape(),
wmape()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.