mae | R Documentation |
Mean absolute error (MAE)
mae(actuals, preds, na.rm = FALSE)
actuals |
A numeric vector of actual values. |
preds |
A numeric vector of prediction values. |
na.rm |
A logical value indicating whether actual and prediction pairs with at least one NA value should be ignored. |
In Machine and Deep Learning, MAE is also known as L1 loss function. In opposite to MSE, MAE is more robust to outliers.
Mean absolute error.
Other Metrics:
accuracy()
,
cross_entropy()
,
dice()
,
entropy()
,
erf()
,
erfc()
,
erfcinv()
,
erfinv()
,
gini_impurity()
,
huber_loss()
,
iou()
,
log_cosh_loss()
,
mape()
,
mse()
,
msle()
,
quantile_loss()
,
rmse()
,
rmsle()
,
rmspe()
,
sse()
,
stderror()
,
vc()
,
wape()
,
wmape()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.