msle: Mean squared logarithmic error (MSLE)

View source: R/deepMetrics.r

msleR Documentation

Mean squared logarithmic error (MSLE)

Description

Mean squared logarithmic error (MSLE)

Usage

msle(actuals, preds, alpha = 1, na.rm = FALSE)

Arguments

actuals

A numeric vector of actual values.

preds

A numeric vector of prediction values.

alpha

A numeric value (default 1) to prevent taking a negative or zero log.

na.rm

A logical value indicating whether actual and prediction pairs with at least one NA value should be ignored.

Value

Mean squared logarithmic error.

See Also

Other Metrics: accuracy(), cross_entropy(), dice(), entropy(), erf(), erfc(), erfcinv(), erfinv(), gini_impurity(), huber_loss(), iou(), log_cosh_loss(), mae(), mape(), mse(), quantile_loss(), rmse(), rmsle(), rmspe(), sse(), stderror(), vc(), wape(), wmape()


stschn/deepANN documentation built on June 25, 2024, 7:27 a.m.