runPOWSC: Estimate characterized parameters for a given scRNA-seq data...

Description Usage Arguments Value Examples

View source: R/runPOWSC.R

Description

These parameters include four gene-wise parameters and two cell-wise parameters.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
runPOWSC(
  sim_size = c(50, 100, 200, 800, 1000),
  per_DE = 0.05,
  est_Paras,
  DE_Method = c("MAST", "SC2P"),
  Cell_Type = c("PW", "Multi"),
  multi_Prob = NULL,
  alpha = 0.1,
  disc_delta = 0.1,
  cont_delta = 0.5
)

Arguments

sim_size

a list of numbers

per_DE

the percentage of the DE genes.

est_Paras

the template parameter estimated from one cell type.

DE_Method

is a string chosen from "MAST" or "SC2P".

Cell_Type

is a string corresponding to the 1st scenario: same cell type comparison, and 2nd scenario: multiple cell types.

multi_Prob

is the mixture cell proportions which sum up to 1. If not summing up to 1, then the package will internally do the normalization procedure.

alpha

is the cutoff for the fdr which can be modified

disc_delta

or the zero ratio change is the cutoff (=0.1) used to determined the high DE genes for Form II.

cont_delta

or the lfc is the cutoff (=0.5) used to determined the high DE genes for Form II.

Value

POWSC object

Examples

1
2
3
4
5
6
7
8
data("es_mef_sce")
sce = es_mef_sce[, colData(es_mef_sce)$cellTypes == "fibro"]
set.seed(12)
rix = sample(1:nrow(sce), 500)
sce = sce[rix, ]
est_Paras = Est2Phase(sce)
sim_size = c(100, 200) # A numeric vector
pow_rslt = runPOWSC(sim_size = sim_size, est_Paras = est_Paras,per_DE=0.05, DE_Method = "MAST", Cell_Type = "PW") # Note, using our previous developed tool SC2P is faster.

suke18/POWSC documentation built on April 2, 2021, 4:34 a.m.