#' @export
CNE = function(survdata, method = c('CNE', 'dabrowska', 'linying', 'corcoef','naive.X'), l=10000, cv=F, GEN.BOUND=T){
method = match.arg(method)
N.sample = nrow(survdata)
dimension = ncol(survdata)/2
if(method=='CNE'){
Den = opt_(survdata, dimension = 2, repeats = TRUE);
estimated.T = Estimate_T_MonteCalro(survdata, Den, GEN.BOUND = GEN.BOUND);
estimated.cov = cov(estimated.T);
estimated.edge = rho_glasso(estimated.cov, N.sample, l=l);
if(cv){
cv.rho = CVglasso(estimated.T)
res = list(cv.rho = cv.rho[[3]][2], Edges = estimated.edge)
return(res)
}
} else if(method=='dabrowska'){
Den = probability_estimation(survdata, method = "dabrowska", repeats=TRUE);
estimated.T = Estimate_T_MonteCalro(survdata, Den, GEN.BOUND = GEN.BOUND);
estimated.cov = cov(estimated.T);
estimated.edge = rho_glasso(estimated.cov, N.sample, l=l);
} else if(method=='linying'){
Den = probability_estimation(survdata, method = "linying", repeats=TRUE);
estimated.T = Estimate_T_MonteCalro(survdata, Den, GEN.BOUND = GEN.BOUND);
estimated.cov = cov(estimated.T);
estimated.edge = rho_glasso(estimated.cov, N.sample, l=l);
} else if(method=='corcoef'){
estimated.edge = naive.cor(survdata, NUM=20)
} else if(method=='naive.X'){
X.cov = cov(survdata[,1:dimension*2-1])
estimated.edge = rho_glasso(X.cov, N.sample, l=l);
}
colnames(estimated.edge) = c('Node1', 'Node2', 'rho')
return(estimated.edge)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.