# 2.1.2
p1 <- ggplot_nlp(
dat = regr_results[m %in% c(0, 50) & n == 2000 & beta1 != "0" &
miss_mech == "MCAR" & X_level == "continuous"],
estim = "rmse",
method_var = "analy",
true = 0,
step_factors = c("beta1", "prop_miss", "haz_shape", "eta1"),
point_dodge = 0.7,
text_size = 4,
pointsize = 1.5,
height_steps = 0.03,
height_betw_steps = 0.075,
top_step = -0.1,
step_labels = c(
"beta1" = "Beta1 = {0.5, 1}",
"prop_miss" = "Missing % = {10, 50}",
"haz_shape" = "Hazard shapes = {similar, different}",
"eta1" = "Mech. strength = {weak, strong}"
)
) +
ggplot2::guides(shape = guide_legend("Method"),
linetype = guide_legend("Method")) +
theme_bw(base_size = 12) +
scale_y_continuous(breaks = c(0, 0.1, 0.2)) +
facet_wrap(. ~ var_label, nrow = 4, ncol = 1, labeller = label_parsed) +
ylab("RMSE") +
theme(
legend.position = "bottom",
plot.title = element_text(hjust = 0.5)#,
#strip.text = element_text(size=15)
) +
ggplot2::scale_shape_discrete(
breaks = c("ref", "CCA", "ch1", "ch12", "ch12_int", "smcfcs"),
labels = c("Ref", "CCA", expression(CH[1]), expression(CH[12]),
expression(CH["12,int"]), "smcfcs")
) +
ggplot2::scale_linetype_discrete(
breaks = c("ref", "CCA", "ch1", "ch12", "ch12_int", "smcfcs"),
labels = c("Ref", "CCA", expression(CH[1]), expression(CH[12]),
expression(CH["12,int"]), "smcfcs")
)
ggplot2::ggsave(
plot = p1,
filename = "analysis/figures/github_212_regr.pdf",
units = "in",
width = 7,
height = 10,
dpi = 300
)
# 1.2.1
p2 <- preds_results[
beta1 != "0" &
miss_mech == "MAR" &
times == "5 years" &
`combo-X_Z` %in% c("mean_X-Z_mean", "-1SD_X-Z_-1SD", "+1SD_X-Z_+1SD") &
X_level == "continuous" &
prop_miss == "50%"
] %>%
ggplot_nlp(
estim = "bias",
method_var = "analy",
true = 0,
step_factors = c("state", "beta1", "haz_shape", "eta1"),
text_size = 4,
pointsize = 1.5,
point_dodge = 0.7,
height_steps = 0.005,
height_betw_steps = 0.01,
step_labels = c(
"beta1" = "Beta1 = {0.5, 1}",
"state" = "State = {REL, NRM}",
"haz_shape" = "Hazard shapes = {similar, different}",
"eta1" = "Mech. strength = {weak, strong}"
),
top_step = -0.025
) +
facet_wrap(
. ~ `combo-X_Z`, nrow = 3, ncol = 1,
labeller = labeller(`combo-X_Z` = patient_labs)
) +
ggplot2::guides(
shape = ggplot2::guide_legend("Method"),
linetype = ggplot2::guide_legend("Method")
) +
ggplot2::ylab("Bias") +
ggplot2::scale_y_continuous(breaks = c(-0.025, 0, 0.025)) +
ggplot2::theme(legend.position = "bottom") +
ggplot2::scale_shape_discrete(
breaks = c("ref", "CCA", "ch1", "ch12", "ch12_int", "smcfcs"),
labels = c("Ref", "CCA", expression(CH[1]), expression(CH[12]),
expression(CH["12,int"]), "smcfcs")
) +
ggplot2::scale_linetype_discrete(
breaks = c("ref", "CCA", "ch1", "ch12", "ch12_int", "smcfcs"),
labels = c("Ref", "CCA", expression(CH[1]), expression(CH[12]),
expression(CH["12,int"]), "smcfcs")
) +
theme_bw(base_size = 12) +
theme(legend.position = "bottom")
ggplot2::ggsave(
plot = p2,
filename = "analysis/figures/github_121_pred.pdf",
units = "in",
width = 7,
height = 10,
dpi = 300
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.