Description Usage Arguments Details Value References Examples
Explicit boundary adjustment via boundary kernels for the Nadaraya-Watson estimator (local constant regression).
1 2 3 | NW_boundary(x, X, Y, bw,
kernel_interior = epanechnikov, kernel_left = epanechnikov_left,
boundary_left, boundary_right)
|
x |
Evaluation points (vector). |
X |
Data for the regressor (vector). |
Y |
Data for the regressand (vector). |
bw |
Bandwidth (scalar). |
kernel_interior |
Kernel used in the interior (function). Default is |
kernel_left |
Left boundary kernels (function). Default is |
boundary_left |
Lower boundary of the support of X (scalar). |
boundary_right |
Upper boundary of the support of X (scalar). |
When applying the Nadaraya-Watson estimator with a compactly supported
(on the interval [-1, 1]) kernel to data of a regressor that is
compactly supported, boundary effects arise over the regions
[boundary_left
, boundary_left
+ bw
) and
(boundary_right
- bw
, boundary_right
].
That is, the bias is of larger order compared to the interior.
The original order can be preserved by using special so-called boundary
kernels when applying Nadaraya-Watson at the boundaries
(e.g. Gasser and Müller, 1979).
“Smooth optimum boundary kernels” (Müller, 1991, Table 1) are available:
uniform_left
, epanechnikov_left
, biweight_left
,
triweight_left
.
Moreover, an alternative version of these kernels with greater asymptotic
efficiency at the cost of discontinuity at their endpoints
(Müller and Wang, 1994, Table 1) is available:
uniform_alt_left
, epanechnikov_alt_left
, biweight_alt_left
,
triweight_alt_left
.
The effective kernel at an evaluation point is the set of effectively assigned weights in the smoothing process (see Hastie and Loader, 1993).
List containing:
estimates |
Estimates for the regression function at the evaluation points (vector). |
effective_kernels |
Effective kernels at the evaluation points (matrix). |
Gasser, T. and H.-G. Müller (1979). “Kernel estimation of regression functions”. In: Smoothing Techniques for Curve Estimation. Ed. by T. Gasser and M. Rosenblatt. Berlin: Springer, pp. 23–68.
Müller, H.-G. (1991). “Smooth optimum kernel estimators near endpoints”. Biometrika 78 (3), pp. 521–530.
Müller, H.-G. and J.-L. Wang (1994). “Hazard rate estimation under random censoring with varying kernels and bandwidths”. Biometrics 50 (1), pp. 61–76.
Hastie, T. and C. Loader (1993). “Local regression: Automatic kernel carpentry”. Statistical Science 8 (2), pp. 120–129.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | m_fun <- function(x) {sin(2*pi*x)} # True regression function
n <- 100 # Sample size
X <- seq(0, 1, length.out = n) # Data for the regressor
m_X <- m_fun(X) # True values of regression function
epsilon <- rnorm(n, sd = 0.25) # Error term
Y <- m_X + epsilon # Data for the regressand
bw <- 0.2 # Bandwidth
x <- seq(0, 1, length.out = n/2) # Evaluation points
output_NW_boundary <- NW_boundary(x = x, X = X, Y = Y, bw = bw,
kernel_interior = epanechnikov, kernel_left = epanechnikov_left,
boundary_left = 0, boundary_right = 1)
estimates_NW_boundary <- output_NW_boundary$estimates
effective_kernels_NW_boundary <- output_NW_boundary$effective_kernels
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.