| GLMplot | R Documentation |
This function computes and plots generalized principal components analysis for dimension reduction of count expression matrix.
GLMplot( exploredds, L = 2, plotly = FALSE, savePlot = FALSE, filePlot = NULL, ... )
exploredds |
object of class |
L |
desired number of latent dimensions (positive integer). |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information,
please consult the |
... |
additional parameters for the |
returns an object of ggplot or plotly class.
F. William Townes and Kelly Street (2020). glmpca: Dimension Reduction of Non-Normally Distributed Data. R package version 0.2.0. https://CRAN.R-project.org/package=glmpca
## Targets file
targetspath <- system.file("extdata", "targets.txt", package = "systemPipeR")
targets <- read.delim(targetspath, comment = "#")
cmp <- systemPipeR::readComp(file = targetspath, format = "matrix",
delim = "-")
## Count table file
countMatrixPath <- system.file("extdata", "countDFeByg.xls",
package = "systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names = 1)
## Plot
exploredds <- exploreDDS(countMatrix, targets, cmp = cmp[[1]],
preFilter = NULL, transformationMethod = "raw")
GLMplot(exploredds, plotly = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.