GLMplot | R Documentation |
This function computes and plots generalized principal components analysis for dimension reduction of count expression matrix.
GLMplot( exploredds, L = 2, plotly = FALSE, savePlot = FALSE, filePlot = NULL, ... )
exploredds |
object of class |
L |
desired number of latent dimensions (positive integer). |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information,
please consult the |
... |
additional parameters for the |
returns an object of ggplot
or plotly
class.
F. William Townes and Kelly Street (2020). glmpca: Dimension Reduction of Non-Normally Distributed Data. R package version 0.2.0. https://CRAN.R-project.org/package=glmpca
## Targets file targetspath <- system.file("extdata", "targets.txt", package = "systemPipeR") targets <- read.delim(targetspath, comment = "#") cmp <- systemPipeR::readComp(file = targetspath, format = "matrix", delim = "-") ## Count table file countMatrixPath <- system.file("extdata", "countDFeByg.xls", package = "systemPipeR") countMatrix <- read.delim(countMatrixPath, row.names = 1) ## Plot exploredds <- exploreDDS(countMatrix, targets, cmp = cmp[[1]], preFilter = NULL, transformationMethod = "raw") GLMplot(exploredds, plotly = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.