| heatMaplot | R Documentation |
This function performs hierarchical clustering on the transformed expression matrix generated with the DESeq2 package. It uses, by default, a Pearson correlation-based distance measure and complete linkage for cluster join.
heatMaplot( exploredds, clust, DEGlist = NULL, plotly = FALSE, savePlot = FALSE, filePlot = NULL, ... )
exploredds |
object of class |
clust |
select the data to apply the distance matrix computation.
If |
DEGlist |
List of up or down regulated gene/transcript identifiers
meeting the chosen filter settings for all comparisons defined in data
frames |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information,
please consult the |
... |
additional parameters for the |
returns an object of pheatmap or plotly class.
Raivo Kolde (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap
### Load data
targetspath <- system.file("extdata", "targets.txt",
package = "systemPipeR")
targets <- read.delim(targetspath, comment = "#")
cmp <- systemPipeR::readComp(file = targetspath,
format = "matrix", delim = "-")
countMatrixPath <- system.file("extdata", "countDFeByg.xls",
package = "systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names = 1)
## Samples plot
exploredds <- exploreDDS(countMatrix, targets,
cmp = cmp[[1]],
preFilter = NULL, transformationMethod = "rlog"
)
heatMaplot(exploredds, clust = "samples", plotly = TRUE)
## Individuals genes identified in DEG analysis
### DEG analysis with `systemPipeR`
degseqDF <- systemPipeR::run_DESeq2(
countDF = countMatrix,
targets = targets, cmp = cmp[[1]], independent = FALSE
)
DEG_list <- systemPipeR::filterDEGs(
degDF = degseqDF,
filter = c(Fold = 2, FDR = 10)
)
### Plot
heatMaplot(exploredds,
clust = "ind",
DEGlist = unique(as.character(unlist(DEG_list[[1]])))
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.