| PCAplot | R Documentation |
This function plots a Principal Component Analysis (PCA) from transformed expression matrix. This plot shows samples variation based on the expression values and identifies batch effects.
PCAplot(exploredds, plotly = FALSE, savePlot = FALSE, filePlot = NULL)
exploredds |
object of class |
plotly |
logical: when |
savePlot |
logical: when |
filePlot |
file name where the plot will be saved. For more information,
please consult the |
returns an object of ggplot or plotly class.
## Targets file
targetspath <- system.file("extdata", "targets.txt", package = "systemPipeR")
targets <- read.delim(targetspath, comment = "#")
cmp <- systemPipeR::readComp(file = targetspath, format = "matrix",
delim = "-")
## Count table file
countMatrixPath <- system.file("extdata", "countDFeByg.xls",
package = "systemPipeR")
countMatrix <- read.delim(countMatrixPath, row.names = 1)
## Plot
exploredds <- exploreDDS(countMatrix, targets, cmp = cmp[[1]],
preFilter = NULL, transformationMethod = "rlog")
PCAplot(exploredds, plotly = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.