# bd.shifts.plot: bd.shifts.plot: Plots the diversification rate estimates... In tanja819/TreePar: Estimating Birth and Death Rates Based on Phylogenies

## Description

bd.shifts.plot plots the diversification rate estimates obtained with the function bd.shifts.optim.

## Usage

 `1` ```bd.shifts.plot(resall,shifts,timemax=100,ratemin=-1,ratemax=1,plotturnover=FALSE) ```

## Arguments

 `resall` When k trees were analyzed, a list of length k with entries being the component [[2]] of the output from bd.shifts.optim for each tree. `shifts` resall contains the maximum likelihood parameter estimates for 0...m shifts. shifts specifies for how many shifts you want to plot the estimated diversification rates (you can determine the number of significant shifts using a likelihood ratio test). `timemax` Specifies the upper end of the x-axis (time in past). Lower end is always 0. `ratemin, ratemax` Specifies the upper and lower end of the y-axis (diversification rates). `plotturnover` The net diversification (speciation-extinction) rate is plotted. If plotturnover=TRUE, also turnover=extinction/speciation is plotted.

## Author(s)

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30``` ```set.seed(1) # First we simulate a tree, and then estimate the parameters for the tree: # Number of species nspecies <- 20 # At time 1 and 2 in the past, we have a rate shift: time <- c(0,1,2) # Mass extinction intensities 0.5 at time 1 in past, 0.4 at time 2 in past. # Present day species are all sampled (rho[1]=1): rho <- c(1,0.5,0.4) # speciation rates (between t[i],t[i+1] we have speciation rate lambda[i]): lambda <- c(2,2,1) # extinction rates (between t[i],t[i+1] we have extinction rate mu[i]): mu <- c(1,1,0) # Simulation of a tree: tree<-sim.rateshift.taxa(nspecies,1,lambda,mu,frac=rho,times=time,complete=FALSE) # Extracting the speciation times x: x<-sort(getx(tree[[1]]),decreasing=TRUE) # When estimating the shift times t for x, we allow the shift times to be 0.6, 0.8, 1, 1.2, .. ,2.4: start <- 0.6 end <- 2.4 grid <- 0.2 # We fix rho and estimate time, lambda, mu: res <- bd.shifts.optim(x,rho,grid,start,end) res[[2]] # We plot the result for 2 shifts: bd.shifts.plot(list(res[[2]]),2,3,0,2) ```