# load relevant packages
library(STRINGdb)
library(igraph)
library(ggplot2)
library(dplyr)
library(glue)
# load all package functions
devtools::load_all()
# read differential expression data (annotated with gene symbols)
de_string <- readRDS('data/de_string_v11.RDS')
# select MYC condition as an example
myc_de <- de_string$MYC
# string_db <- readRDS('data/string_db_v11.RDS')
ppi <- readRDS('data/string_ppi_v11.RDS')
sim <- readRDS('data/string_ppi_v11_jacc_sim_list_dense.RDS')
id_xref <- readRDS('data/biomart_xreference_ppi_genes.RDS')
# call wrapper
results <- centrality_pipeline(deg = myc_de,
# string_db = string_db,
ppi = ppi,
sim = sim,
id_xref = id_xref,
edge_conf_score_min = 950,
logFC_min = 1.5,
pvalue_max = 0.05,
method = 'betweenness',
causal_gene_symbol = 'MYC',
weighted = TRUE,
connected_filter = TRUE)
View(results)
# annotate with gene symbols
top_genes <- results$top_genes
# plotting
set.seed(4)
plot_graph(results[['network']], method = 'weighted_score', gene_list = c('MYC'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.