#' Format sediment data
#'
#' @param pathin A path to unzipped csv files with sediment result tables
#'
#' @return A \code{data.frame} of sediment data for Tampa Bay
#'
#' @details Function is used internally within \code{\link{read_importsediment}}
#'
#' @concept read
#'
#' @importFrom dplyr %>%
#'
#' @export
#'
#' @examples
#' \dontrun{
#'
#' # location to download data
#' path <- '~/Desktop/sediment.zip'
#'
#' # download
#' urlin1 <- 'https://epcbocc.sharepoint.com/:x:/s/Share/'
#' urlin2 <- 'Ef9utuKCHD9LliarsOPKCJwB5kxgCObf0tY5x5wX20JQUA?e=DuTseb'
#' urlin <- paste0(urlin1, urlin2, '&download=1')
#' read_dlcurrent(path, download_latest = TRUE, urlin = urlin)
#'
#' # unzip
#' tmppth <- tempfile()
#' utils::unzip(path, exdir = tmppth, overwrite = TRUE)
#'
#' # format sediment data
#' read_formsediment(pathin = tmppth)
#'
#' # remove temporary path
#' unlink(tmppth, recursive = TRUE)
#'
#' }
read_formsediment <- function(pathin){
tzone <- 'America/Jamaica'
# fetch relevant tables ---------------------------------------------------
# files
fls <- list.files(pathin, recursive = T, full.names = T)
# sediment chemistry list
SedimentChemistryList <- read.csv(grep('/SedimentChemistryList\\.csv$', fls, value = TRUE))
# format for output -------------------------------------------------------
out <- SedimentChemistryList %>%
dplyr::select(-DataSource, -LabIdNumber, -AreaName, -Hexagon, -AnalysisTypeAbbr,
-ParameterID, -ValueText, -ValueNum, -ResultComments, -MDLCode,
-MDLText, -PQLText, -PrepMethod, -MethodTypeAbbr, -LaboratoryAbbr,
-CASNumber, -NELACNumber, -DOHCertification, -WQMQCSignOff) %>%
dplyr::rename(yr = Year) %>%
dplyr::mutate(
PEL = ifelse(Parameter == 'DDE', 374, PEL),
FundingProject = gsub('\\s+$', '', FundingProject),
Replicate = tolower(Replicate),
Units = gsub('Kg$', 'kg', Units),
PEL = as.numeric(gsub('^NULL$', NA, PEL)),
TEL = as.numeric(gsub('^NULL$', NA, TEL)),
BetweenTELPEL = ifelse(`ValueAdjusted` > TEL & `ValueAdjusted` <= PEL & !grepl('U|T', Qualifier), 'Yes', 'No'),
ExceedsPEL = ifelse(`ValueAdjusted` > PEL & !grepl('U|T', Qualifier), 'Yes', 'No'),
PELRatio = `ValueAdjusted` / PEL
) %>%
dplyr::filter(ValueAdjusted != 999999) %>% # several entries in 2023 as 999999, O qualifier meaning samples lost
tibble::tibble()
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.