R/prediction_power.R

Defines functions prediction_power

Documented in prediction_power

#' @title Prediction Power
#' @description
#' Computes prediction power when pairs of variables in a given dataframe are used
#' to predict a third variable from the same dataframe. The prediction strength is measured by
#' expected conditional entropies.
#' @param dat dataframe with rows as observations and columns as variables.
#' Variables must all be observed or transformed categorical with finite range spaces.
#' @param var character string representing the variable in
#' dataframe \code{dat} to be predicted by pairs of other variables in the dataframe \code{dat}.
#' @return Upper triangular matrix giving the expected conditional entropies of pairs of variables
#' given as rows and columns of the matrix. The diagonal gives \emph{EH(Z|X) = H(X,Z) - H(X)}, that is
#' when only one variable is used to predict \code{var}. Note that \code{NA}'s are in the entire
#' row and column representing the variable being predicted.
#' @details The expected conditional entropy given by\cr
#'
#' \emph{EH(Z|X,Y) = H(X,Y,Z) - H(X, Y)} \cr
#'
#' measures the prediction uncertainty when pairs of variables \emph{X} and \emph{Y}
#' are used to predict variable \emph{Z}.
#' The lower the value of \emph{EH} given different pairs of variables \emph{X} and \emph{Y},
#' the stronger is the prediction of \emph{Z}.
#' @author Termeh Shafie
#' @seealso \code{\link{entropy_trivar}}, \code{\link{entropy_bivar}}
#' @references Frank, O., & Shafie, T. (2016). Multivariate entropy analysis of network data.
#' \emph{Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique}, 129(1), 45-63.
#' @examples
#' # use internal data set
#' data(lawdata)
#' df.att <- lawdata[[4]]
#'
#' # three steps of data editing:
#' # 1. categorize variables 'years' and 'age' based on
#' # approximately three equally size groups (values based on cdf)
#' # 2. make sure all outcomes start from the value 0 (optional)
#' # 3. remove variable 'senior' as it consists of only unique values (thus redundant)
#' df.att.ed <- data.frame(
#'     status = df.att$status,
#'     gender = df.att$gender,
#'     office = df.att$office - 1,
#'     years = ifelse(df.att$years <= 3, 0,
#'         ifelse(df.att$years <= 13, 1, 2)
#'     ),
#'     age = ifelse(df.att$age <= 35, 0,
#'         ifelse(df.att$age <= 45, 1, 2)
#'     ),
#'     practice = df.att$practice,
#'     lawschool = df.att$lawschool - 1
#' )
#'
#' # power of predicting 'status' using pairs of other variables
#' prediction_power("status", df.att.ed)

#' @export

prediction_power <- function(var, dat) {
    z <- which(names(dat) == var)

    varname_orig <- colnames(dat)
    varname_new <- sprintf("V%d", seq_len(ncol(dat)))
    names(dat) <- varname_new

    H2 <- entropy_bivar(dat)
    H3 <- entropy_trivar(dat)


    H3$V1 <- as.numeric(gsub("V", "", H3$V1))
    H3$V2 <- as.numeric(gsub("V", "", H3$V2))
    H3$V3 <- as.numeric(gsub("V", "", H3$V3))

    H3 <- as.matrix(H3)
    dimE <- max(H3[, 1:3])

    idz <- which(apply(H3[, 1:3], 1, function(x) any(x == z)))
    EHZXY <- matrix(NA, dimE, dimE)
    for (xy in idz) {
        idxy <- sort(setdiff(H3[xy, 1:3], z))
        x <- idxy[1]
        y <- idxy[2]
        x.coord <- which(paste0("V", x) == colnames(H2))
        y.coord <- which(paste0("V", y) == colnames(H2))
        z.coord <- which(paste0("V", z) == colnames(H2))
        EHZXY[x, y] <- H3[xy, 4] - H2[x.coord, y.coord]
    }

    # add the diagonal
    z.coord <- which(paste0("V", z) == colnames(H2))
    H2[lower.tri(H2)] <- H2[upper.tri(H2)]
    for (x in seq_len(nrow(H2))) {
        if (x != z) {
            EHZXY[x, x] <- H2[x, z.coord] - H2[z.coord, z.coord]
        }
    }

    colnames(EHZXY) <- varname_orig
    rownames(EHZXY) <- varname_orig
    EHZXY <- as.matrix(EHZXY)
    EHZXY <- round(EHZXY, 3)

    return(EHZXY)
}
termehs/netropy documentation built on Oct. 28, 2024, 6:04 p.m.