Description Usage Arguments Details Value Examples
View source: R/smallfar_nonpara_sthao.R
boot_farr_fit.np
returns an object of class ("boot_farrfit.np", "boot_farrfit", "farrfit")
which contains the estimates of the far for each bootstrap sample and
for different return periods rp
1 | boot_farr_fit.np(x, z, rp, B = 100)
|
x |
the variable of interest in the counterfactual world. |
z |
the variable of interest in the factual world. |
rp |
the return periods for which the far is to be estimated. |
B |
the number of bootstrap samples to draw. |
This function returns bootstrap non-parametric estimates of far, the fraction of attributable risk for records, as defined in Naveau et al (2018).The far is estimated from the bootstrap samples of the data x and z that are obtained by resampling bootstrap. The first bootstrap sample corresponds to the original dataset of x and z.
For the full reference, see : Naveau, P., Ribes, A., Zwiers, F., Hannart, A., Tuel, A., & Yiou, P. Revising return periods for record events in a climate event attribution context. J. Clim., 2018., https://doi.org/10.1175/JCLI-D-16-0752.1
An object of class ("boot_farrfit.np", "boot_farrfit", "farrfit")
.
It is a matrix where each columm contains the far estimated for the returns periods rp
for a given bootstrap sample.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | library(evd)
muF <- 1; xiF <- .15; sigmaF <- 1.412538 # cst^(-xiF) # .05^(-xi1);
# asymptotic limit for the far in this case with a Frechet distributiom
boundFrechet <- 1 - sigmaF^(-1/xiF)
# sample size
size <- 100
# level=.9
set.seed(4)
z = rgev(size, loc = (sigmaF), scale = xiF * sigmaF, shape = xiF)
x = rgev(length(z), loc=(1), scale = xiF, shape=xiF)
rp = seq(from = 2, to = 30, length = 200)
# Resampling bootstrap for the non-parametrc estimation of the far
boot_farr.np <- boot_farr_fit.np(x = x, z = z, rp = rp, B = 10)
print(boot_farr.np)
confint(boot_farr.np)
ylim <- range(boundFrechet, boot_farr.np)
plot(boot_farr.np, ylim = ylim, main = "boot far non-parametric")
# Theoretical far for in this case (Z = sigmaF * X with X ~ Frechet)
lines(rp, frechet_farr(r = rp, sigma = sigmaF, xi = xiF), col = "red", lty = 2)
abline(h = boundFrechet, col = "red", lty = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.