Description Usage Arguments Details Value Examples
View source: R/smallfar_nonpara_sthao.R
estim_farr.np
returns an object of class ("farrfit_np", "farrfit")
which contains
the results of the non-parametric estimation of the far.
1 | estim_farr.np(x, z, rp)
|
x |
the variable of interest in the counterfactual world. |
z |
the variable of interest in the factual world. |
rp |
the return periods for which the far is to be estimated. |
This function returns an non-parametric estimate of the far, the fraction of attributable risk for records, as defined in Naveau et al (2018).
For the full reference, see : Naveau, P., Ribes, A., Zwiers, F., Hannart, A., Tuel, A., & Yiou, P. Revising return periods for record events in a climate event attribution context. J. Clim., 2018., https://doi.org/10.1175/JCLI-D-16-0752.1
An object of class ("farrfit_np", "farrfit")
. It is a list containing the following
elements:
the return periods for which the far is estimated.
the estimate of the far for each return period rp
the standard deviation of the estimator of the far assuming asymptotic gaussianity
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | library(evd)
muF <- 1; xiF <- .15; sigmaF <- 1.412538 # cst^(-xiF) # .05^(-xi1);
# asymptotic limit for the farr in this case with a Frechet distributiom
boundFrechet <- frechet_lim(sigma = sigmaF, xi = xiF)
# sample size
size <- 100
# level=.9
set.seed(4)
z = rgev(size, loc = (sigmaF), scale = xiF * sigmaF, shape = xiF)
x = rgev(length(z), loc=(1), scale = xiF, shape=xiF)
rp = seq(from = 2, to = 30, length = 200)
# non-parametric estimation of far
farr_fit.np <- estim_farr.np(x = x, z = z, rp = rp)
print(farr_fit.np)
ylim <- range(boundFrechet, farr_fit.np$farr_hat)
plot(farr_fit.np, ylim = ylim, main = "far empirical")
# Theoretical for in this case (Z = sigmaF * X with X ~ Frechet)
lines(rp, frechet_farr(r = rp, sigma = sigmaF, xi = xiF), col = "red", lty = 2)
abline(h = boundFrechet, col = "red", lty = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.