Description Usage Arguments Details Value Examples
View source: R/smallfar_para_sthao.R
boot_farr_fit.wexp
returns an object of class ("boot_farrfit.wexp", "boot_farrfit", "farrfit")
which contains the estimates of the far for each bootstrap sample and
for different return periods rp
1 | boot_farr_fit.wexp(theta_boot, rp)
|
theta_boot |
the results obtained from the function |
rp |
the return periods for which theta is to be estimated. |
This function returns bootstrap estimates of far, the fraction of attributable risk for records, as defined in Naveau et al (2018). This estimation is made assuming that W = - log(G(Z)) follows an exponentional distribution: W ~ exp(theta). G denotes the Cumulative Distribution Function of the counterfactual variable X. The far is estimate from the bootstrap samples of theta that are obtained by resampling bootstrap. The first bootrtrap sample corresponds to the original dataset of x and y.
For the full reference, see : Naveau, P., Ribes, A., Zwiers, F., Hannart, A., Tuel, A., & Yiou, P. Revising return periods for record events in a climate event attribution context. J. Clim., 2018., https://doi.org/10.1175/JCLI-D-16-0752.1
An object of class ("boot_farrfit.wexp", "boot_farrfit", "farrfit")
.
It is a matrix where each columm contains the far estimated for the returns periods rp
for a given bootstrap sample.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | library(evd)
muF <- 1; xiF <- .15; sigmaF <- 1.412538 # cst^(-xiF) # .05^(-xi1);
# asymptotic limit for the far in this case with a Frechet distributiom
boundFrechet <- frechet_lim(sigma = sigmaF, xi = xiF)
# sample size
size <- 100
# level=.9
set.seed(4)
z = rgev(size, loc = (sigmaF), scale = xiF * sigmaF, shape = xiF)
x = rgev(length(z), loc=(1), scale = xiF, shape=xiF)
rp = seq(from = 2, to = 30, length = 200)
# Resampling bootstrap for the estimation of far assuming an exponential distribution for theta
theta_boot.exp <- boot_theta_fit.wexp(x = x, z = z, B = 10)
# Estimate the far from the bootstrap samples of theta
boot_farr.exp <- boot_farr_fit.wexp(theta_boot = theta_boot.exp$theta_boot , rp = rp)
confint(boot_farr.exp)
print(boot_farr.exp)
ylim <- range(boundFrechet, boot_farr.exp)
plot(boot_farr.exp, ylim = ylim, main = "boot far exponential")
# Theoretical for in this case (Z = sigmaF * X with X ~ Frechet)
lines(rp, frechet_farr(r = rp, sigma = sigmaF, xi = xiF), col = "red", lty = 2)
abline(h = boundFrechet, col = "red", lty = 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.