Description Usage Arguments Value Author(s) Examples
This function fits within- and between-species branching models to reconstructed gene trees, known as the generalized mixed yule coalescent (GMYC) model, and the Brownian motion process to (continous) trait evolution with a change in evolutionary rates.
1 2 3 4 5 6 7 8 9 |
tr |
An ultrametric, dichotomous tree object in ape format. |
interval |
Upper and lower limit of estimation of scaling parameters, e.g. c(0,10) |
trait |
A matrix of trait values with rownames corresponding to tips of the tree (NA for missing traits) |
meserr |
A data.frame (or matrix) of squared standard error for each traits. Can contain NAs. row.names should match tip labels of the phylogeny. |
traitmodel |
Model of trait evolution. Either "BMBM" where a shift in rate of morphological variation is modeled. Or "BMWN" where a shift in rate together with a shift in mode of evolution from Brownian motion towards no phylogenetic signal is modeled (i.e. white noise). |
quiet |
By default shows no progress on console. Use quiet = TRUE to enable. |
ncores |
Number of cores used for fitting models of trait evolution |
traitgmyc returns an object of class "traitgmyc": a list with the following elements
method |
method used for an analysis |
likelihood |
likelihood values for each gmyc optimization |
parameters |
estimated parameters for each gmyc optimization. (lambda1, lambda2, pp1, pp2) |
entity |
numbers of entities |
cluster |
numbers of clusters |
MRCA |
index of MRCA nodes, i.e. ancestral node of each delimited cluster |
threshold.time |
optimized threshold times |
tree |
the tree |
traitsGmyc |
data.frame with likelihood and rate parameters for Brownian motion process with a shift at gmyc threshold times |
trait |
traits |
sum_likelihoods |
sum of gmyc and Brownian motion likelihood |
Torsten Hauffe and Robin Ackermann
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ## Not run:
N <- 10
SpeciesResult <- data.frame(Species = 1:N,
Individuals = sample(2:20, N, replace = TRUE))
SpeciesResult$Theta <- runif(N, min = 0.01, max = 0.7)
Tree <- pbtree(b = 0.2, n = N)
Tree <- replaceTiplabel(Tree, Newlabel = "Tip")
GmycTree <- gmycSimulatedTree(Tree, SpeciesResult, Scale = FALSE)
GmycTreePainted <- paintSpeciesBranches(GmycTree)
Ntraits <- 3
SigmasSpecies <- simSigma(Ntraits)
Cor <- cov2cor(SigmasSpecies)
PopSigmaMulti <- 2
SigmasPopulations <- simSigma(Ntraits,
Cor = Cor[lower.tri(Cor)],
Sigma2 = PopSigmaMulti * sqrt(diag(SigmasSpecies)))
Sigmas <- list(Species = SigmasSpecies, Populations = SigmasPopulations)
SimTraits <- mvSIM(GmycTreePainted, model = "BMM",
param = list(ntraits = Ntraits,
theta = rep(0, Ntraits),
sigma = Sigmas))
SimTraits[1,1] <- NA
Res <- traitGmyc(tr = GmycTree,
trait = SimTraits,
meserr = NULL,
quiet = TRUE,
ncores = 1)
plot(Res)
SpeciesTree <- pbtree(b = 0.27, n = 10)
GeneTree <- simGenealogy(Species = SpeciesTree,
Scenario = "B",
Ind = 5,
PopSize = 100000)
SimTraits <- simTraitsIndividuals(SpeciesTree,
Ntraits = 4,
IndPop = GeneTree$Species,
Sigma2 = rep(1, 4))
Res <- traitGmyc(tr = GeneTree$Genealogy,
trait = SimTraits,
traitmodel = "BMWN",
meserr = NULL,
quiet = TRUE,
ncores = 1)
plot(Res, ask = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.