#' @title Calculates the overall Corrected Covered Area (CCA) Index
#'
#' @description It calculates the overall CCA index for the entire citation matrix. It is taking as input the citation matrix.
#'
#' @param cm Defines the data frame containing 1s, 0s, and NAs (in case of structural missingness).
#'
#' @return res
#'
#' @example man/examples/example3.R
#'
#' @export
cca <- function(cm){
cm <- cm[, -1]
cm <- cm[, order(colnames(cm))]
studies<-nrow(cm)
reviews<-ncol(cm)
N <- sum(cm, na.rm = T)
r <- nrow(cm)
c <- ncol(cm)
X <- sum(is.na(cm))
CCA_Proportion <- (N-r)/((r*c)-r-X)
CCA_Percentage <- round(CCA_Proportion*100, digits = 1)
if (sum(is.na(cm)) == 0) {
res <- data.frame(reviews, N, r, c, CCA_Proportion, CCA_Percentage, stringsAsFactors=FALSE)
} else {
res <- data.frame(reviews, N, r, c, X, CCA_Proportion, CCA_Percentage, stringsAsFactors=FALSE)
names(res)[names(res) == 'X'] <- 'Structural_missingness'
names(res)[names(res) == 'CCA_Proportion'] <- 'CCA_Proportion_adjusted'
names(res)[names(res) == 'CCA_Percentage'] <- 'CCA_Percentage_adjusted'
message("the CCA formula has been adjusted for structural missingness")
}
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.