abc_smc: abc function

View source: R/abc.R

abc_smcR Documentation

abc function

Description

abc function

Usage

abc_smc(
  ref_tree,
  statistics,
  simulation_function,
  init_epsilon_value,
  prior_generating_function,
  prior_density_function,
  number_of_particles = 1000,
  sigma = 0.05,
  stop_rate = 1e-05,
  num_iterations = 50
)

Arguments

statistics

A list containing statistics functions

simulation_function

A function that implements the diversification model and returns an object of class "phylo".

prior_generating_function

Function to generate parameters from the prior distribution of these parameters (e.g. a function returning lambda and mu in case of the birth-death model)

prior_density_function

Function to calculate the prior probability of a set of parameters.

number_of_particles

Number of particles to be used per iteration of the ABC-SMC algorithm.

sigma

Standard deviation of the perturbance distribution (perturbance distribution is a gaussian with mean 0).

stop_rate

If the acceptance rate drops below stopRate, stop the ABC-SMC algorithm and assume convergence.

num_iterations

num iterations

tree

an object of class "phylo"; the tree upon which we want to fit our diversification model

init_epsilon_values

A vector containing the initial threshold values for the summary statistics from the vector statistics.

Value

A matrix with n columns, where n is the number of parameters you are trying to estimate.

References

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M.P.H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31), 187-202.


thijsjanzen/enviDiv documentation built on Feb. 17, 2025, 8:20 p.m.