abc_smc | R Documentation |
abc function
abc_smc(
ref_tree,
statistics,
simulation_function,
init_epsilon_value,
prior_generating_function,
prior_density_function,
number_of_particles = 1000,
sigma = 0.05,
stop_rate = 1e-05,
num_iterations = 50
)
statistics |
A list containing statistics functions |
simulation_function |
A function that implements the
diversification model and returns an object of class |
prior_generating_function |
Function to generate parameters from the prior distribution of these parameters (e.g. a function returning lambda and mu in case of the birth-death model) |
prior_density_function |
Function to calculate the prior probability of a set of parameters. |
number_of_particles |
Number of particles to be used per iteration of the ABC-SMC algorithm. |
sigma |
Standard deviation of the perturbance distribution (perturbance distribution is a gaussian with mean 0). |
stop_rate |
If the acceptance rate drops below |
num_iterations |
num iterations |
tree |
an object of class |
init_epsilon_values |
A vector containing the initial threshold values
for the summary statistics from the vector |
A matrix with n
columns,
where n
is the number of parameters you are trying to estimate.
Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M.P.H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31), 187-202.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.