View source: R/plot_progress_stat_on_multiple_instances.R
Plot how a statistic for each element of set of algorithms progress over a set of problem instances. For each instance, one diagram is plotted. The diagrams are arranged one by one from in a vertical row.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | aitoa.plot.progress.stat.on.multiple.instances(
results.dir,
algorithms,
instances,
time.column = c("t", "fes"),
max.time = NA_integer_,
algorithm.colors = aitoa.distinct.colors(length(algorithms)),
quantiles = .stat.plot.default.quantiles,
center.stat = median,
center.lty = .default.lty,
center.lwd = .thick.lwd,
quantile.transparency = 0.8,
make.stairs.quantiles = FALSE,
make.stairs.center = FALSE,
instances.limit = NA_integer_,
instances.limit.name = NULL,
instance.limit.color = .instance.limit.color,
instance.limit.lty = .instance.limit.lty,
instance.limit.lwd = .instance.limit.lwd,
legend.cex = .legend.cex,
legend.bg = .legend.bg,
time.axis.text = if (time.column[[1L]] == "t") .time.ms.text else .time.fes.text,
quality.axis.text = .quality.text,
make.time.unique = (time.column[[1L]] == "t"),
use.f.range.from.raw.data = FALSE,
mgp = .default.mgp,
tck = .default.tck,
cex = .default.cex,
mar = .default.mar.without.labels,
mar.single = .default.mar.without.labels,
...
)
|
results.dir |
the directory where the results can be loaded from |
algorithms |
the list of algorithm IDs. The |
instances |
the list of instance IDs. The |
time.column |
the time dimension, either |
max.time |
an optional limit for the time, can be a vector |
algorithm.colors |
a character vector of the same length as
|
quantiles |
the quantiles to be plotted in a shaded fashion: all values must be >= 0 and < 0.5 and are mirrored. I.e., if you specify 0.2, then the region between the 0.2 and 0.8 quantile will be plotted semi-transparent. |
center.stat |
the central statistic to plot, usually the median or mean |
center.lty |
the line type to be used for the median lines |
center.lwd |
the line width to be used for median lines |
quantile.transparency |
the transparency to be applied to each quantile polygon |
make.stairs.quantiles |
should the quantiles be shown as stairs
( |
make.stairs.center |
should the center statistic be shown as stairs
( |
instances.limit |
an optional vector of lower bounds or best-known solutions for the instances |
instances.limit.name |
an optional name or name vector for the instances limits |
instance.limit.color |
the color for the instance limit line |
instance.limit.lty |
the line type for the instance limit line |
instance.limit.lwd |
the line width for the instance limit line |
legend.cex |
the character scaling for the legend |
legend.bg |
the background color for the legend |
time.axis.text |
the text to be used for labeling the time axis,
|
quality.axis.text |
the text to be used for labeling the quality axis,
|
make.time.unique |
should we make the time indices unique (except maybe
for the first and last point)? This makes sense when we want to plot
diagrams over a time axis, as we then have removed redundant points right
away. If |
use.f.range.from.raw.data |
should we use the real data to compute the range of the y-axis, or should the range depend on the computed statistics only (default)? |
mgp |
the mgp parameter to be passed to plot |
tck |
the tck parameter to be passed to plot |
cex |
the default character scaling |
mar |
the default margins, can be a list of vectors, one for each plot |
mar.single |
the margin parameter(s) to be passed to the single diagrams |
... |
parameters to be passed to par |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.