tests/test_estimate_alpha_binning.R

rm(list = ls())
library("mcPAFit")

alpha <- 0.5
net <- simple_net(time_step = 100000, p_const = 0.01, alpha = alpha)
stats <- get_my_statistics(net$net)
#result_PAFit <- empirical_estimate_PAFit(net$net)


result <- empirical_estimate_binning(stats$final_deg)

#result <- empirical_estimate_square(stats$final_deg)

final_deg <- stats$final_deg

y_min <- min(result$A,result_PAFit$A[as.integer(names(result_PAFit$A)) <= max(result$k)])
y_max <- max(result$A,result_PAFit$A[as.integer(names(result_PAFit$A)) <= max(result$k)])

plot(result$k + 1, result$A, log = "xy", pch = 20,
     #ylim = c(y_min,y_max),
     xlab = "Degree + 1", ylab = "Attachment rate")
true <- (result$k + 1)^alpha
lines(result$k + 1, true)

points(result_PAFit$k + 1,result_PAFit$A, 
       pch = 20,col = "blue")

deg_vec <- table(stats$final_deg)
degree <- as.integer(names(deg_vec))
k_1 <- quantile(stats$final_deg,95/100)
abline(v = k_1)
thongphamthe/mcPAFit documentation built on May 20, 2019, 10:23 p.m.