# nocov start
make_rand_forest_aorsf <- function() {
parsnip::set_model_engine("rand_forest", "classification", "aorsf")
parsnip::set_model_engine("rand_forest", "regression", "aorsf")
parsnip::set_dependency(
"rand_forest",
"aorsf",
"aorsf",
mode = "classification"
)
parsnip::set_dependency(
"rand_forest",
"aorsf",
"bonsai",
mode = "classification"
)
parsnip::set_dependency("rand_forest", "aorsf", "aorsf", mode = "regression")
parsnip::set_dependency("rand_forest", "aorsf", "bonsai", mode = "regression")
parsnip::set_model_arg(
model = "rand_forest",
eng = "aorsf",
parsnip = "mtry",
original = "mtry",
func = list(pkg = "dials", fun = "mtry"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "aorsf",
parsnip = "trees",
original = "n_tree",
func = list(pkg = "dials", fun = "trees"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "aorsf",
parsnip = "min_n",
original = "leaf_min_obs",
func = list(pkg = "dials", fun = "min_n"),
has_submodel = FALSE
)
parsnip::set_model_arg(
model = "rand_forest",
eng = "aorsf",
parsnip = "mtry",
original = "mtry",
func = list(pkg = "dials", fun = "mtry"),
has_submodel = FALSE
)
parsnip::set_fit(
model = "rand_forest",
eng = "aorsf",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "aorsf", fun = "orsf"),
defaults = list(
n_thread = 1,
verbose_progress = FALSE
)
)
)
parsnip::set_encoding(
model = "rand_forest",
eng = "aorsf",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_fit(
model = "rand_forest",
eng = "aorsf",
mode = "regression",
value = list(
interface = "formula",
protect = c("formula", "data", "weights"),
func = c(pkg = "aorsf", fun = "orsf"),
defaults = list(
n_thread = 1,
verbose_progress = FALSE
)
)
)
parsnip::set_encoding(
model = "rand_forest",
eng = "aorsf",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "aorsf",
mode = "classification",
type = "class",
value = list(
pre = NULL,
# makes prob preds consistent with class ones.
# note: the class predict method in aorsf uses the standard 'each tree
# gets one vote' approach, which is usually consistent with probability
# but not all the time. I opted to make predicted probability totally
# consistent with predicted class in the parsnip bindings for aorsf b/c
# I think it's really confusing when predicted probs do not align with
# predicted classes. I'm fine with this in aorsf but in bonsai I want
# to minimize confusion (#78).
post = function(results, object) {
missings <- apply(results, 1, function(x) any(is.na(x)))
if (!any(missings)) {
return(colnames(results)[apply(results, 1, which.max)])
}
obs <- which(!missings)
out <- rep(NA_character_, nrow(results))
out[obs] <- colnames(results)[apply(results[obs, ], 1, which.max)]
out
},
func = c(fun = "predict"),
args = list(
object = quote(object$fit),
new_data = quote(new_data),
pred_type = "prob",
verbose_progress = FALSE,
na_action = 'pass'
)
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "aorsf",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = function(x, object) {
as_tibble(x)
},
func = c(fun = "predict"),
args = list(
object = quote(object$fit),
new_data = quote(new_data),
pred_type = 'prob',
verbose_progress = FALSE,
na_action = 'pass'
)
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "aorsf",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args = list(
object = quote(object$fit),
new_data = quote(new_data),
verbose_progress = FALSE,
na_action = 'pass'
)
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "aorsf",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = as.numeric,
func = c(fun = "predict"),
args = list(
object = quote(object$fit),
new_data = quote(new_data),
pred_type = "mean",
verbose_progress = FALSE,
na_action = 'pass'
)
)
)
parsnip::set_pred(
model = "rand_forest",
eng = "aorsf",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = as.numeric,
func = c(fun = "predict"),
args = list(
object = quote(object$fit),
new_data = quote(new_data),
pred_type = "mean",
verbose_progress = FALSE,
na_action = 'pass'
)
)
)
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.