# These functions define the discriminant analysis models. They are executed when
# this package is loaded via `.onLoad()` and modify the parsnip package's
# model environment.
# These functions are tested indirectly when the models are used. Since this
# function is executed on package startup, you can't execute them to test since
# they are already in the parsnip model database. We'll exclude them from
# coverage stats for this reason.
# nocov start
make_discrim_quad_MASS <- function() {
parsnip::set_model_engine("discrim_quad", "classification", "MASS")
parsnip::set_dependency("discrim_quad", "MASS", "MASS")
parsnip::set_dependency("discrim_quad", "MASS", "discrim")
parsnip::set_fit(
model = "discrim_quad",
eng = "MASS",
mode = "classification",
value = list(
interface = "formula",
protect = c("formula", "data"),
func = c(pkg = "MASS", fun = "qda"),
defaults = list()
)
)
parsnip::set_encoding(
model = "discrim_quad",
eng = "MASS",
mode = "classification",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
parsnip::set_pred(
model = "discrim_quad",
eng = "MASS",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = get_class,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "discrim_quad",
eng = "MASS",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = post_to_tibble,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
parsnip::set_pred(
model = "discrim_quad",
eng = "MASS",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data)
)
)
)
}
# ------------------------------------------------------------------------------
make_discrim_quad_sparsediscrim <- function() {
parsnip::set_model_engine("discrim_quad", "classification", "sparsediscrim")
parsnip::set_dependency("discrim_quad", "sparsediscrim", "sparsediscrim")
parsnip::set_dependency("discrim_quad", "sparsediscrim", "discrim")
parsnip::set_fit(
model = "discrim_quad",
eng = "sparsediscrim",
mode = "classification",
value = list(
interface = "data.frame",
protect = c("x", "y"),
func = c(pkg = "discrim", fun = "fit_regularized_quad"),
defaults = list()
)
)
parsnip::set_encoding(
model = "discrim_quad",
eng = "sparsediscrim",
mode = "classification",
options = list(
predictor_indicators = "traditional",
compute_intercept = TRUE,
remove_intercept = TRUE,
allow_sparse_x = FALSE
)
)
parsnip::set_model_arg(
model = "discrim_quad",
eng = "sparsediscrim",
parsnip = "regularization_method",
original = "regularization_method",
func = list(pkg = "dials", fun = "regularization_method"),
has_submodel = FALSE
)
parsnip::set_pred(
model = "discrim_quad",
eng = "sparsediscrim",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
type = "class"
)
)
)
parsnip::set_pred(
model = "discrim_quad",
eng = "sparsediscrim",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(new_data),
type = "prob"
)
)
)
parsnip::set_pred(
model = "discrim_quad",
eng = "sparsediscrim",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(fun = "predict"),
args =
list(
object = quote(object$fit),
newdata = quote(as.matrix(new_data))
)
)
)
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.