set_new_model("bart")
set_model_mode("bart", "classification")
set_model_mode("bart", "regression")
# ------------------------------------------------------------------------------
set_model_engine("bart", "classification", "dbarts")
set_model_engine("bart", "regression", "dbarts")
set_dependency("bart", "dbarts", "dbarts")
set_model_arg(
model = "bart",
eng = "dbarts",
parsnip = "trees",
original = "ntree",
func = list(pkg = "dials", fun = "trees", range = c(50, 500)),
has_submodel = FALSE
)
set_model_arg(
model = "bart",
eng = "dbarts",
parsnip = "prior_terminal_node_coef",
original = "base",
func = list(pkg = "dials", fun = "prior_terminal_node_coef"),
has_submodel = FALSE
)
set_model_arg(
model = "bart",
eng = "dbarts",
parsnip = "prior_terminal_node_expo",
original = "power",
func = list(pkg = "dials", fun = "prior_terminal_node_expo"),
has_submodel = FALSE
)
set_model_arg(
model = "bart",
eng = "dbarts",
parsnip = "prior_outcome_range",
original = "k",
func = list(pkg = "dials", fun = "prior_outcome_range"),
has_submodel = FALSE
)
set_fit(
model = "bart",
eng = "dbarts",
mode = "regression",
value = list(
interface = "data.frame",
data = c(x = "x.train", y = "y.train"),
protect = c("x", "y"),
func = c(pkg = "dbarts", fun = "bart"),
defaults = list(verbose = FALSE, keeptrees = TRUE, keepcall = FALSE)
)
)
set_encoding(
model = "bart",
eng = "dbarts",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
set_fit(
model = "bart",
eng = "dbarts",
mode = "classification",
value = list(
interface = "data.frame",
data = c(x = "x.train", y = "y.train"),
protect = c("x", "y"),
func = c(pkg = "dbarts", fun = "bart"),
defaults = list(verbose = FALSE, keeptrees = TRUE, keepcall = FALSE)
)
)
set_encoding(
model = "bart",
eng = "dbarts",
mode = "classification",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data),
type = "numeric"
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(obj = quote(object),
new_data = quote(new_data))
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "conf_int",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = expr(object),
new_data = expr(new_data),
type = "conf_int",
level = expr(level),
std_err = expr(std_error)
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "pred_int",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = expr(object),
new_data = expr(new_data),
type = "pred_int",
level = expr(level),
std_err = expr(std_error)
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "classification",
type = "class",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data),
type = "class"
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "classification",
type = "prob",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data),
type = "prob"
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "classification",
type = "conf_int",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = expr(object),
new_data = expr(new_data),
type = "conf_int",
level = expr(level),
std_err = expr(std_error)
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "classification",
type = "pred_int",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = expr(object),
new_data = expr(new_data),
type = "pred_int",
level = expr(level),
std_err = expr(std_error)
)
)
)
set_pred(
model = "bart",
eng = "dbarts",
mode = "classification",
type = "raw",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data)
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.