ctrl <- control_parsnip(verbosity = 1, catch = FALSE)
caught_ctrl <- control_parsnip(verbosity = 1, catch = TRUE)
quiet_ctrl <- control_parsnip(verbosity = 0, catch = TRUE)
run_glmnet <- utils::compareVersion('3.6.0', as.character(getRversion())) > 0
# ------------------------------------------------------------------------------
# for skips
is_tf_ok <- function() {
tf_ver <- try(tensorflow::tf_version(), silent = TRUE)
if (inherits(tf_ver, "try-error")) {
res <- FALSE
} else {
res <- !is.null(tf_ver)
}
res
}
if (rlang::is_installed("modeldata")) {
# ------------------------------------------------------------------------------
library(modeldata)
data("wa_churn")
data("lending_club")
data("hpc_data")
data(two_class_dat, package = "modeldata")
# ------------------------------------------------------------------------------
hpc <- hpc_data[1:150, c(2:5, 8)]
num_hpc_pred <- names(hpc)[1:4]
class_tab <- table(hpc$class, dnn = NULL)
hpc_bad <-
hpc |>
dplyr::mutate(big_num = Inf)
set.seed(352)
mlp_dat <- hpc[order(runif(150)),]
tr_mlp_dat <- mlp_dat[1:140, ]
te_mlp_dat <- mlp_dat[141:150, ]
mars_hpc_pred_list <- colnames(hpc)[1:3]
mlp_hpc_pred_list <- names(hpc)[1:4]
nnet_hpc_pred_list <- names(hpc)[1:4]
hpc_nnet_dat <- hpc_data[1:150, c(2:5, 8)]
# ------------------------------------------------------------------------------
lm_fit <-
linear_reg(mode = "regression") |>
set_engine("lm") |>
fit(compounds ~ ., data = hpc)
lending_club <-
lending_club |>
dplyr::slice(1:200) |>
dplyr::mutate(big_num = Inf)
lending_lvl <- levels(lending_club$Class)
# ------------------------------------------------------------------------------
# for quantile regression tests
data("Sacramento")
Sacramento_small <-
modeldata::Sacramento |>
dplyr::mutate(price = log10(price)) |>
dplyr::select(price, beds, baths, sqft, latitude, longitude)
sac_train <- Sacramento_small[-(1:5), ]
sac_test <- Sacramento_small[ 1:5 , ]
# ------------------------------------------------------------------------------
# For sparse tibble testing
sparse_hotel_rates <- function(tibble = FALSE) {
# 99.2 sparsity
hotel_rates <- modeldata::hotel_rates
prefix_colnames <- function(x, prefix) {
colnames(x) <- paste(colnames(x), prefix, sep = "_")
x
}
dummies_country <- hardhat::fct_encode_one_hot(hotel_rates$country)
dummies_company <- hardhat::fct_encode_one_hot(hotel_rates$company)
dummies_agent <- hardhat::fct_encode_one_hot(hotel_rates$agent)
res <- dplyr::bind_cols(
hotel_rates["avg_price_per_room"],
prefix_colnames(dummies_country, "country"),
prefix_colnames(dummies_company, "company"),
prefix_colnames(dummies_agent, "agent")
)
res <- as.matrix(res)
res <- Matrix::Matrix(res, sparse = TRUE)
if (tibble) {
res <- sparsevctrs::coerce_to_sparse_tibble(res)
# materialize outcome
withr::local_options("sparsevctrs.verbose_materialize" = NULL)
res$avg_price_per_room <- res$avg_price_per_room[]
}
res
}
}
if (rlang::is_installed("survival")) {
data(cancer, package = "survival")
basic_form <- survival::Surv(time, status) ~ age
complete_form <- survival::Surv(time) ~ age
if (R.Version()$major < "4") {
data(lung, package = 'survival')
} else {
data(cancer, package = 'survival')
}
basic_form <- survival::Surv(time, status) ~ group
complete_form <- survival::Surv(time) ~ group
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.