#' Create missing data column indicators
#'
#' `step_indicate_na()` creates a *specification* of a recipe step that will
#' create and append additional binary columns to the data set to indicate which
#' observations are missing.
#'
#' @inheritParams step_classdist
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param prefix A character string that will be the prefix to the
#' resulting new variables. Defaults to "na_ind".
#' @template step-return
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @family dummy variable and encoding steps
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' purrr::map_dbl(credit_data, function(x) mean(is.na(x)))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_indicate_na(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te)
step_indicate_na <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
prefix = "na_ind",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("indicate_na")) {
terms <- enquos(...)
add_step(
recipe,
step_indicate_na_new(
terms = terms,
role = role,
trained = trained,
columns = columns,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_indicate_na_new <-
function(terms, role, trained, columns, prefix, keep_original_cols, skip,
id) {
step(
subclass = "indicate_na",
terms = terms,
role = role,
trained = trained,
columns = columns,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_indicate_na <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
step_indicate_na_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
prefix = x$prefix,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_indicate_na <- function(object, new_data, ...) {
col_names <- names(object$columns)
check_new_data(col_names, object, new_data)
cols <- list()
for (col_name in col_names) {
cols[[col_name]] <- ifelse(is.na(new_data[[col_name]]), 1L, 0L)
}
cols <- tibble::new_tibble(cols, nrow = nrow(new_data))
cols <- dplyr::rename_with(cols, ~ vec_paste0(object$prefix, "_", .x))
cols <- check_name(cols, new_data, object, names(cols))
new_data <- vec_cbind(new_data, cols)
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
#' @export
print.step_indicate_na <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Creating missing data variable indicators for "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_indicate_na <- function(x, ...) {
if (is_trained(x)) {
res <- tibble::tibble(terms = unname(x$columns))
} else {
res <- tibble::tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.