#' Kernel PCA signal extraction
#'
#' `step_kpca()` creates a *specification* of a recipe step that will convert
#' numeric data into one or more principal components using a kernel basis
#' expansion.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param options A list of options to [kernlab::kpca()]. Defaults are set for
#' the arguments `kernel` and `kpar` but others can be passed in.
#' **Note** that the arguments `x` and `features` should not be passed here
#' (or at all).
#' @param res An S4 [kernlab::kpca()] object is stored here once this
#' preprocessing step has be trained by [prep()].
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details
#' When performing kPCA with `step_kpca()`, you must choose the kernel
#' function (and any important kernel parameters). This step uses the
#' \pkg{kernlab} package; the reference below discusses the types of kernels
#' available and their parameter(s). These specifications can be made in the
#' `kernel` and `kpar` slots of the `options` argument to `step_kpca()`.
#' Consider using [step_kpca_rbf()] for a radial basis function kernel or
#' [step_kpca_poly()] for a polynomial kernel.
#'
#' @template kpca-info
#'
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2", "kernlab"))
#' library(ggplot2)
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' kpca_trans <- rec %>%
#' step_YeoJohnson(all_numeric_predictors()) %>%
#' step_normalize(all_numeric_predictors()) %>%
#' step_kpca(all_numeric_predictors())
#'
#' kpca_estimates <- prep(kpca_trans, training = biomass_tr)
#'
#' kpca_te <- bake(kpca_estimates, biomass_te)
#'
#' ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
#' geom_point() +
#' coord_equal()
#'
#' tidy(kpca_trans, number = 3)
#' tidy(kpca_estimates, number = 3)
step_kpca <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
options = list(
kernel = "rbfdot",
kpar = list(sigma = 0.2)
),
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca")) {
recipes_pkg_check(required_pkgs.step_kpca())
add_step(
recipe,
step_kpca_new(
terms = enquos(...),
role = role,
trained = trained,
num_comp = num_comp,
res = res,
columns = columns,
options = options,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_kpca_new <-
function(terms, role, trained, num_comp, res, columns, options, prefix,
keep_original_cols, skip, id) {
step(
subclass = "kpca",
terms = terms,
role = role,
trained = trained,
num_comp = num_comp,
res = res,
columns = columns,
options = options,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_kpca <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
check_string(x$prefix, arg = "prefix")
check_number_whole(x$num_comp, arg = "num_comp", min = 0)
if (x$num_comp > 0 && length(col_names) > 0) {
cl <-
rlang::call2(
"kpca",
.ns = "kernlab",
x = rlang::expr(as.matrix(training[, col_names])),
features = x$num_comp
)
cl <- call_modify(cl, !!!x$options)
kprc <- try(rlang::eval_tidy(cl), silent = TRUE)
if (inherits(kprc, "try-error")) {
cli::cli_abort(c(
x = "Failed with error:",
i = as.character(kprc)
))
}
} else {
kprc <- NULL
}
step_kpca_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_comp = x$num_comp,
options = x$options,
res = kprc,
columns = col_names,
prefix = x$prefix,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_kpca <- function(object, new_data, ...) {
uses_dim_red(object)
col_names <- names(object$columns)
check_new_data(col_names, object, new_data)
keep_going <- object$num_comp > 0 && length(col_names) > 0
if (!keep_going) {
return(new_data)
}
cl <-
rlang::call2(
"predict",
.ns = "kernlab",
object = object$res,
rlang::expr(as.matrix(new_data[, col_names]))
)
comps <- rlang::eval_tidy(cl)
comps <- comps[, seq_len(object$num_comp), drop = FALSE]
colnames(comps) <- names0(ncol(comps), object$prefix)
comps <- as_tibble(comps)
comps <- check_name(comps, new_data, object)
new_data <- vctrs::vec_cbind(new_data, comps)
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
#' @export
print.step_kpca <- function(x, width = max(20, options()$width - 40), ...) {
title <- "Kernel PCA extraction with "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_kpca <- function(x, ...) {
uses_dim_red(x)
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_kpca <- function(x, ...) {
c("kernlab")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.