# step is tested on extratests, and is getting deprecated
# nocov start
#' Non-negative matrix factorization signal extraction
#'
#' @description
#'
#' `step_nnmf()` creates a *specification* of a recipe step that will convert
#' numeric data into one or more non-negative components.
#'
#' `r lifecycle::badge("deprecated")`
#'
#' Please use [step_nnmf_sparse()] instead of this step function.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param num_run A positive integer for the number of computations runs used
#' to obtain a consensus projection.
#' @param options A list of options to `nmf()` in the NMF package by way of the
#' `NNMF()` function in the `dimRed` package. **Note** that the arguments
#' `data` and `ndim` should not be passed here, and that NMF's parallel
#' processing is turned off in favor of resample-level parallelization.
#' @param res The `NNMF()` object is stored
#' here once this preprocessing step has been trained by
#' [prep()].
#' @param prefix A character string that will be the prefix to the
#' resulting new variables. See notes below.
#' @param seed An integer that will be used to set the seed in isolation
#' when computing the factorization.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details Non-negative matrix factorization computes latent components that
#' have non-negative values and take into account that the original data
#' have non-negative values.
#'
#' ```{r, echo = FALSE, results="asis"}
#' prefix <- "NNMF"
#' result <- knitr::knit_child("man/rmd/num_comp.Rmd")
#' cat(result)
#' ```
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value`, `component` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{numeric, value of loading}
#' \item{component}{character, name of component}
#' \item{id}{character, id of this step}
#' }
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_nnmf"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2"))
#' data(biomass, package = "modeldata")
#'
#' # rec <- recipe(HHV ~ ., data = biomass) %>%
#' # update_role(sample, new_role = "id var") %>%
#' # update_role(dataset, new_role = "split variable") %>%
#' # step_nnmf(all_numeric_predictors(), num_comp = 2, seed = 473, num_run = 2) %>%
#' # prep(training = biomass)
#' #
#' # bake(rec, new_data = NULL)
#' #
#' # library(ggplot2)
#' # bake(rec, new_data = NULL) %>%
#' # ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) + geom_point()
step_nnmf <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
num_run = 30,
options = list(),
res = NULL,
columns = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("nnmf")) {
recipes_pkg_check(required_pkgs.step_nnmf())
lifecycle::deprecate_warn("0.2.0", "step_nnmf()", "step_nnmf_sparse()")
add_step(
recipe,
step_nnmf_new(
terms = enquos(...),
role = role,
trained = trained,
num_comp = num_comp,
num_run = num_run,
options = options,
res = res,
columns = columns,
prefix = prefix,
seed = seed,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_nnmf_new <-
function(terms, role, trained, num_comp, num_run, options, res, columns,
prefix, seed, keep_original_cols, skip, id) {
step(
subclass = "nnmf",
terms = terms,
role = role,
trained = trained,
num_comp = num_comp,
num_run = num_run,
options = options,
res = res,
columns = columns,
prefix = prefix,
seed = seed,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_nnmf <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
if (x$num_comp > 0 && length(col_names) > 0) {
x$num_comp <- min(x$num_comp, length(col_names))
nmf_opts <- list(parallel = FALSE, parallel.required = FALSE)
nnm <- try(
eval_dimred_call(
"embed",
.method = "NNMF",
.data = dimred_data(training[, col_names, drop = FALSE]),
ndim = x$num_comp,
nrun = x$num_run,
seed = x$seed,
.mute = c("message", "output"),
options = x$options,
.options = nmf_opts
),
silent = TRUE
)
if (inherits(nnm, "try-error")) {
cli::cli_abort(c(
x = "Failed with error:",
i = as.character(nnm)
))
}
} else {
nnm <- NULL
}
step_nnmf_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_comp = x$num_comp,
num_run = x$num_run,
options = x$options,
res = nnm,
columns = col_names,
prefix = x$prefix,
seed = x$seed,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_nnmf <- function(object, new_data, ...) {
check_new_data(object$columns, object, new_data)
keep_going <- object$num_comp > 0 && length(object$columns) > 0
if (!keep_going) {
return(new_data)
}
nnmf_vars <- rownames(object$res@other.data$w)
comps <-
object$res@apply(dimred_data(new_data[, nnmf_vars, drop = FALSE]))@data
comps <- comps[, seq_len(object$num_comp), drop = FALSE]
colnames(comps) <- names0(ncol(comps), object$prefix)
comps <- as_tibble(comps)
comps <- check_name(comps, new_data, object)
new_data <- vec_cbind(new_data, comps)
new_data <- remove_original_cols(new_data, object, nnmf_vars)
new_data
}
#' @export
print.step_nnmf <- function(x, width = max(20, options()$width - 29), ...) {
title <- "Non-negative matrix factorization for "
print_step(colnames(x$res@org.data), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_nnmf <- function(x, ...) {
if (is_trained(x)) {
if (x$num_comp > 0 && length(x$columns) > 0) {
res <- x$res@other.data$w
var_nms <- rownames(res)
res <- tibble::as_tibble(res)
res$terms <- var_nms
res <- tidyr::pivot_longer(res,
cols = c(-terms),
names_to = "component", values_to = "value"
)
res <- res[, c("terms", "value", "component")]
res <- res[order(res$component, res$terms), ]
} else {
res <- tibble(terms = unname(x$columns), value = na_dbl, component = na_dbl)
}
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_dbl, component = x$num_comp)
}
res$id <- x$id
res
}
# ------------------------------------------------------------------------------
#' @export
tunable.step_nnmf <- function(x, ...) {
tibble::tibble(
name = c("num_comp", "num_run"),
call_info = list(
list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
list(pkg = "dials", fun = "num_runs", range = c(1L, 10L))
),
source = "recipe",
component = "step_nnmf",
component_id = x$id
)
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_nnmf <- function(x, ...) {
c("dimRed", "NMF")
}
# nocov end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.