library(testthat)
library(recipes)
skip_if_not_installed("modeldata")
## -----------------------------------------------------------------------------
data(biomass, package = "modeldata")
biom_tr <- biomass %>%
dplyr::filter(dataset == "Training") %>%
dplyr::select(-dataset, -sample)
biom_te <- biomass %>%
dplyr::filter(dataset == "Testing") %>%
dplyr::select(-dataset, -sample, -HHV)
data(cells, package = "modeldata")
cell_tr <- cells %>%
dplyr::filter(case == "Train") %>%
dplyr::select(-case)
cell_te <- cells %>%
dplyr::filter(case == "Test") %>%
dplyr::select(-case, -class)
load(test_path("test_pls_new.RData"))
## -----------------------------------------------------------------------------
test_that("PLS, dense loadings", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = HHV, num_comp = 3)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, bm_pls_tr)
te_new <- bake(rec, biom_te)
expect_equal(te_new, bm_pls_te)
})
test_that("PLS, dense loadings, multiple outcomes", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV + carbon ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = c("HHV", "carbon"), num_comp = 3)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, bm_pls_multi_tr)
te_new <- bake(rec, biom_te %>% select(-carbon))
expect_equal(te_new, bm_pls_multi_te)
})
test_that("PLS, sparse loadings", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV ~ ., data = biom_tr) %>%
step_pls(
all_predictors(),
outcome = HHV,
num_comp = 3,
predictor_prop = 3 / 5
)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, bm_spls_tr)
te_new <- bake(rec, biom_te)
expect_equal(te_new, bm_spls_te)
})
test_that("PLS, dense loadings, multiple outcomes", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV + carbon ~ ., data = biom_tr) %>%
step_pls(
all_predictors(),
outcome = c("HHV", "carbon"),
num_comp = 3,
predictor_prop = 3 / 5
)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, bm_spls_multi_tr)
te_new <- bake(rec, biom_te %>% select(-carbon))
expect_equal(te_new, bm_spls_multi_te)
})
## -----------------------------------------------------------------------------
test_that("PLS-DA, dense loadings", {
skip_if_not_installed("mixOmics")
rec <- recipe(class ~ ., data = cell_tr) %>%
step_pls(all_predictors(), outcome = class, num_comp = 3)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, cell_plsda_tr)
te_new <- bake(rec, cell_te)
expect_equal(te_new, cell_plsda_te)
})
test_that("PLS-DA, dense loadings, multiple outcomes", {
skip_if_not_installed("mixOmics")
rec <- recipe(class + case ~ ., data = cells) %>%
step_pls(all_predictors(), outcome = c("class", "case"), num_comp = 3)
expect_snapshot(error = TRUE, prep(rec))
})
test_that("PLS-DA, sparse loadings", {
skip_if_not_installed("mixOmics")
rec <- recipe(class ~ ., data = cell_tr) %>%
step_pls(
all_predictors(),
outcome = class,
num_comp = 3,
predictor_prop = 50 / 56
)
rec <- prep(rec)
expect_equal(
names(rec$steps[[1]]$res),
c("mu", "sd", "coefs", "col_norms")
)
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(tr_new, cell_splsda_tr)
te_new <- bake(rec, cell_te)
expect_equal(te_new, cell_splsda_te)
})
test_that("PLS-DA, sparse loadings, multiple outcomes", {
skip_if_not_installed("mixOmics")
rec <- recipe(class + case ~ ., data = cells) %>%
step_pls(
all_predictors(),
outcome = c("class", "case"),
num_comp = 3,
predictor_prop = 50 / 56
)
expect_snapshot(error = TRUE, prep(rec))
})
## -----------------------------------------------------------------------------
test_that("No PLS", {
skip_if_not_installed("mixOmics")
rec <- recipe(class ~ ., data = cell_tr) %>%
step_pls(all_predictors(), outcome = class, num_comp = 0)
rec <- prep(rec)
expect_null(
rec$steps[[1]]$res
)
pred_names <- summary(rec)$variable[summary(rec)$role == "predictor"]
tr_new <- bake(rec, new_data = NULL, all_predictors())
expect_equal(names(tr_new), pred_names)
te_new <- bake(rec, cell_te, all_predictors())
expect_equal(names(te_new), pred_names)
})
## -----------------------------------------------------------------------------
test_that("tidy method", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = HHV, num_comp = 3, id = "dork")
tidy_pre <- tidy(rec, number = 1)
exp_pre <- tibble::tribble(
~terms,
~value,
~component,
~id,
"all_predictors()",
NA_real_,
NA_character_,
"dork"
)
expect_equal(tidy_pre, exp_pre)
rec <- prep(rec)
tidy_post <- tidy(rec, number = 1)
exp_post <-
tibble::tribble(
~terms,
~value,
~component,
~id,
"carbon",
0.82813459059393,
"PLS1",
"dork",
"carbon",
0.718469477422311,
"PLS2",
"dork",
"carbon",
0.476111929729498,
"PLS3",
"dork",
"hydrogen",
-0.206963356355556,
"PLS1",
"dork",
"hydrogen",
0.642998926998282,
"PLS2",
"dork",
"hydrogen",
0.262836631090453,
"PLS3",
"dork",
"oxygen",
-0.49241242430895,
"PLS1",
"dork",
"oxygen",
0.299176769170812,
"PLS2",
"dork",
"oxygen",
0.418081563632953,
"PLS3",
"dork",
"nitrogen",
-0.122633995804743,
"PLS1",
"dork",
"nitrogen",
-0.172719084680244,
"PLS2",
"dork",
"nitrogen",
0.642403301090588,
"PLS3",
"dork",
"sulfur",
0.11768677260853,
"PLS1",
"dork",
"sulfur",
-0.217341766567037,
"PLS2",
"dork",
"sulfur",
0.521114256955661,
"PLS3",
"dork"
)
expect_equal(tidy_post, exp_post, tolerance = 0.01)
})
test_that("check_name() is used", {
skip_if_not_installed("mixOmics")
dat <- mtcars
dat$PLS1 <- dat$mpg
rec <- recipe(~., data = dat) %>%
step_pls(mpg, disp, vs, outcome = am)
expect_snapshot(
error = TRUE,
prep(rec, training = dat)
)
})
## -----------------------------------------------------------------------------
test_that("Deprecation warning", {
expect_snapshot(
error = TRUE,
recipe(~., data = mtcars) %>%
step_pls(outcome = mpg, preserve = TRUE)
)
})
test_that("tunable", {
rec <-
recipe(Species ~ ., data = iris) %>%
step_pls(all_predictors(), outcome = Species)
rec_param <- tunable.step_pls(rec$steps[[1]])
expect_equal(rec_param$name, c("num_comp", "predictor_prop"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 2)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("Do nothing for num_comps = 0 and keep_original_cols = FALSE (#1152)", {
rec <- recipe(carb ~ ., data = mtcars) %>%
step_pls(
all_predictors(),
outcome = carb,
num_comp = 0,
keep_original_cols = FALSE
) %>%
prep()
res <- bake(rec, new_data = NULL)
expect_identical(res, tibble::as_tibble(mtcars))
})
test_that("rethrows error correctly from implementation", {
skip_if_not_installed("mixOmics")
local_mocked_bindings(
.package = "mixOmics",
pls = function(...) {
cli::cli_abort("mocked error")
}
)
expect_snapshot(
error = TRUE,
tmp <- recipe(~., data = mtcars) %>%
step_pls(all_predictors(), outcome = mpg) %>%
prep()
)
})
test_that("error on no outcome", {
skip_if_not_installed("mixOmics")
expect_snapshot(
error = TRUE,
recipe(~., data = mtcars) %>%
step_pls(all_predictors()) %>%
prep()
)
})
test_that("check_options() is used", {
skip_if_not_installed("mixOmics")
expect_snapshot(
error = TRUE,
recipe(~., data = mtcars) %>%
step_pls(disp, outcome = mpg, options = TRUE) %>%
prep()
)
})
test_that("recipes_argument_select() is used", {
skip_if_not_installed("mixOmics")
expect_snapshot(
error = TRUE,
recipe(mpg ~ ., data = mtcars) %>%
step_pls(disp, outcome = NULL) %>%
prep()
)
})
test_that("addition of recipes_argument_select() is backwards compatible", {
skip_if_not_installed("mixOmics")
rec <- recipe(Species ~ ., data = iris) %>%
step_pls(all_predictors(), outcome = Species) %>%
prep()
exp <- bake(rec, iris)
rec$steps[[1]]$outcome <- "Species"
expect_identical(
bake(rec, iris),
exp
)
rec_old <- recipe(Species ~ ., data = iris) %>%
step_pls(all_predictors(), outcome = "Species") %>%
prep()
expect_identical(
bake(rec_old, iris),
exp
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV ~ ., data = biom_tr) %>%
step_pls(carbon, outcome = HHV, num_comp = 3) %>%
update_role(carbon, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
rec <- prep(rec)
expect_snapshot(error = TRUE, bake(rec, new_data = biom_tr[, c(-1)]))
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_pls(rec, outcome = mpg)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_pls(rec1, outcome = mpg)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_pls(rec, outcome = mpg)
expect <- tibble(
terms = character(),
value = double(),
component = character(),
id = character()
)
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("keep_original_cols works", {
skip_if_not_installed("mixOmics")
new_names <- c("vs", "PLS1")
rec <- recipe(vs ~ mpg, mtcars) %>%
step_pls(all_predictors(), outcome = vs, keep_original_cols = FALSE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
new_names
)
rec <- recipe(vs ~ mpg, mtcars) %>%
step_pls(all_predictors(), outcome = vs, keep_original_cols = TRUE)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
c("mpg", new_names)
)
})
test_that("keep_original_cols - can prep recipes with it missing", {
skip_if_not_installed("mixOmics")
rec <- recipe(vs ~ mpg, mtcars) %>%
step_pls(all_predictors(), outcome = vs)
rec$steps[[1]]$keep_original_cols <- NULL
expect_snapshot(
rec <- prep(rec)
)
expect_no_error(
bake(rec, new_data = mtcars)
)
})
test_that("printing", {
skip_if_not_installed("mixOmics")
rec <- recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_predictors(), outcome = HHV, num_comp = 3)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(mpg ~ ., data = mtcars) %>%
step_pls(
all_predictors(),
outcome = mpg,
num_comp = hardhat::tune(),
predictor_prop = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 2L)
})
test_that("bad args", {
skip_if_not_installed("mixOmics")
expect_snapshot(
recipe(mpg ~ ., data = mtcars) %>%
step_pls(-mpg, outcome = mpg, num_comp = -1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(mpg ~ ., data = mtcars) %>%
step_pls(-mpg, outcome = mpg, prefix = 1) %>%
prep(),
error = TRUE
)
expect_snapshot(
recipe(mpg ~ ., data = mtcars) %>%
step_pls(-mpg, outcome = mpg, predictor_prop = -1) %>%
prep(),
error = TRUE
)
})
test_that("0 and 1 rows data work in bake method", {
skip_if_not_installed("mixOmics")
data <- mtcars
rec <- recipe(~., data) %>%
step_pls(all_predictors(), outcome = mpg) %>%
prep()
expect_identical(
nrow(bake(rec, slice(data, 1))),
1L
)
expect_identical(
nrow(bake(rec, slice(data, 0))),
0L
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.