library(tidymodels)
library(textrecipes)
library(themis)
url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-04-20/netflix_titles.csv"
netflix_types <- readr::read_csv(url) %>%
select(type, description)
set.seed(123)
netflix_split <- netflix_types %>%
select(type, description) %>%
initial_split(strata = type)
netflix_train <- training(netflix_split)
netflix_test <- testing(netflix_split)
netflix_rec <- recipe(type ~ description, data = netflix_train) %>%
step_tokenize(description) %>%
step_tokenfilter(description, max_tokens = 1e3) %>%
step_tfidf(description) %>%
step_normalize(all_numeric_predictors()) %>%
step_smote(type)
svm_spec <- svm_linear() %>%
set_mode("classification") %>%
set_engine("LiblineaR")
netflix_fit <-
workflow(netflix_rec, svm_spec) %>%
fit(netflix_train)
library(vetiver)
v <- vetiver_model(netflix_fit, "netflix_descriptions")
v
library(pins)
model_board <- board_connect()
vetiver_pin_write(model_board, v)
library(plumber)
pr() %>%
vetiver_api(v, debug = TRUE)
## next pipe to pr_run(port = 8088) to see visual documentation
vetiver_write_plumber(
model_board,
"julia.silge/netflix_descriptions",
debug = TRUE,
file = "inst/plumber/netflix-descriptions/plumber.R"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.