#' @title Make The Comparison Indicators
#' @description Description
#' @param indicators_by_topic desc
#' @param model_table_production desc
#' @param indicator_type_template desc
#' @return a `tibble`
#' @export
make_indicators_comparison <- function(indicators_by_topic,
model_table_production,
indicator_type_template){
# NOTE --------------------------------------------------------------------
# This applies to vulnerability and housing market indicators
# CREATE THE FILTER-JOIN OBJECT -------------------------------------------
inds_table_filter_join <- model_table_production %>%
dplyr::select(TOPIC, INDICATOR, VARIABLE, MEASURE_TYPE, DATE_GROUP_ID) %>%
dplyr::distinct() %>%
dplyr::arrange(TOPIC, INDICATOR, VARIABLE, MEASURE_TYPE, DATE_GROUP_ID)
# REFORMAT ----------------------------------------------------------------
ind_type_fields <- indicator_type_template %>%
dplyr::full_join(indicators_by_topic,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"TOPIC",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE"))
# CREATE COMPARISON FUNCTION ---------------------------------------------
get_comparison_fields <- function(data, topic, measure_type){
# IF MEASURE_TYPE ISN'T PERCENT OR MEDIAN ---------------------------------
if(! measure_type %in% c("PERCENT", "MEDIAN")){
return(data)
}
# COUNTY ------------------------------------------------------------------
df_county <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("county"))
# IF TOPIC %in% VULNERABILITY ---------------------------------------------
if(topic %in% "VULNERABILITY"){
if(! measure_type %in% c("PERCENT")){
return(data)
}
county_median <- data %>% dplyr::filter(GEOGRAPHY_TYPE %in% "county") %>% dplyr::pull(ESTIMATE)
df_community_tract <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("tract", "community")) %>%
dplyr::mutate(INDICATOR_TYPE_THRESHOLD_VALUE = county_median) %>% # create the threshold value
dplyr::mutate(INDICATOR_TYPE = "RELATIVE",
INDICATOR_TYPE_DESC = "RELATIVE TO MEDIAN",
INDICATOR_TYPE_VALUE = plyr::round_any(ESTIMATE - INDICATOR_TYPE_THRESHOLD_VALUE, accuracy = .001),
INDICATOR_TYPE_VALUE_DESC = dplyr::case_when(
INDICATOR_TYPE_VALUE>= 0 ~ "GREATER THAN / EQUAL TO MEDIAN",
TRUE ~ "LESS THAN MEDIAN"
),
INDICATOR_TYPE_THRESHOLD = "MEDIAN",
INDICATOR_TYPE_THRESHOLD_VALUE,
INDICATOR_TYPE_MODEL = INDICATOR_TYPE_VALUE_DESC
)
df_county_community_tract <- list(df_county, df_community_tract) %>%
purrr::map_dfr(c)
return(df_county_community_tract)
}
# IF TOPIC %in% HOUSING MARKET --------------------------------------------
if(topic %in% "HOUSING_MARKET"){
get_q4_lower <- function(x) {
q4_lower <- stats::quantile(x,probs = c(0,.6,1), na.rm = TRUE)[[2]]
q4_lower_rounded <- plyr::round_any(q4_lower, accuracy = .0001)
return(q4_lower_rounded)
}
county_q4_lower <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% "tract") %>%
dplyr::pull("ESTIMATE") %>% get_q4_lower()
df_tract <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("tract")) %>%
dplyr::mutate(INDICATOR_TYPE_THRESHOLD_VALUE = county_q4_lower) %>% # create the threshold value
dplyr::mutate(
INDICATOR_TYPE = "RELATIVE",
INDICATOR_TYPE_DESC = "QUINTILE",
INDICATOR_TYPE_VALUE = as.double(dplyr::ntile(ESTIMATE, n = 5)), # should be double not integer
INDICATOR_TYPE_VALUE_DESC = dplyr::case_when(
INDICATOR_TYPE_VALUE <= 3 ~ "LOW/MED",
TRUE ~ "HIGH"
),
INDICATOR_TYPE_THRESHOLD_VALUE,
INDICATOR_TYPE_THRESHOLD = "Q4 LOWER BOUND",
INDICATOR_TYPE_MODEL = INDICATOR_TYPE_VALUE_DESC
)
df_community <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("community")) %>%
dplyr::mutate(INDICATOR_TYPE_THRESHOLD_VALUE = county_q4_lower) %>% # create the threshold value
dplyr::mutate(
INDICATOR_TYPE = "RELATIVE",
INDICATOR_TYPE_DESC = "QUINTILE",
INDICATOR_TYPE_VALUE = NA_real_, # should be double not integer # also, don't calculate the quintile because the data only contain the "community" aggregations (not the tracts)
INDICATOR_TYPE_VALUE_DESC = dplyr::case_when(
ESTIMATE <= county_q4_lower ~ "LOW/MED",
TRUE ~ "HIGH"
),
INDICATOR_TYPE_THRESHOLD_VALUE,
INDICATOR_TYPE_THRESHOLD = "Q4 LOWER BOUND",
INDICATOR_TYPE_MODEL = INDICATOR_TYPE_VALUE_DESC
)
df_county_community_tract <- list(df_county, df_community, df_tract) %>%
purrr::map_dfr(c)
return(df_county_community_tract)
}
# IF THERE'S A PROBLEM ----------------------------------------------------
stop("Something went wrong with the tests in this function!")
}
# CREATE COMPARISON -------------------------------------------------------
inds_in_models <- ind_type_fields %>%
dplyr::semi_join(inds_table_filter_join, # only include the indicators that are used in the models
by = c("TOPIC",
"INDICATOR",
"VARIABLE",
"MEASURE_TYPE",
"DATE_GROUP_ID"))
inds_vuln_housing <- inds_in_models %>%
dplyr::filter(TOPIC %in% c("VULNERABILITY", "HOUSING_MARKET")) %>%
dplyr::filter(! is.na(GEOGRAPHY_ID)) # for some unknown reason there are NA GEOGRAPHY_IDs in the ASSESSOR rows
inds_vuln_housing_comparison <- inds_vuln_housing %>%
tidyr::nest(-TOPIC, -INDICATOR, -VARIABLE, -DATE_GROUP_ID,-MEASURE_TYPE) %>%
dplyr::mutate(COMP_FIELDS = purrr::pmap(list("data" = data,
"topic" = TOPIC,
"measure_type" = MEASURE_TYPE), get_comparison_fields)) %>%
dplyr::select(-data) %>%
tidyr::unnest()
# REFORMAT ----------------------------------------------------------------
# Note: this just makes sure that the columns have the same order as the indicator_template
indicators_comparison_ready <- indicator_type_template %>%
dplyr::full_join(inds_vuln_housing_comparison,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"TOPIC",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE",
"INDICATOR_TYPE",
"INDICATOR_TYPE_THRESHOLD",
"INDICATOR_TYPE_THRESHOLD_VALUE",
"INDICATOR_TYPE_DESC",
"INDICATOR_TYPE_VALUE",
"INDICATOR_TYPE_VALUE_DESC",
"INDICATOR_TYPE_MODEL"))
indicators_comparison <- indicators_comparison_ready
# VISUALIZE: COUNT --------------------------------------------------------
vis_count <- function(){
indicators_comparison %>%
filter(! GEOGRAPHY_TYPE %in% "county") %>% # INDICATOR_TYPE_MODEL values for the county are all NA
count(GEOGRAPHY_TYPE,TOPIC,INDICATOR,VARIABLE,DATE_GROUP_ID, INDICATOR_TYPE_MODEL) %>% print(n=Inf)
}
# RETURN ------------------------------------------------------------------
return(indicators_comparison)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.