#' @title Make The Change Indicators
#' @description Make the ACS Inidcators related to a _value of a population.
#' An example of the type of indicator included in this object might be
#' the count of renter households, while the median rent price would _not_ be included.
#' @param indicators_comparison desc
#' @param indicator_topic_template desc
#' @return a `tibble`
#' @export
make_indicators_change <- function(indicators_comparison,
indicator_topic_template){
# CREATE CHANGE_ENDYEARS_GUIDE --------------------------------------------
change_endyears <- tibble::tribble(
~INDICATOR, ~VARIABLE, ~BEGIN, ~END,
"COST_BURDEN_OWN", "B25106_OWN", "2010", "2015",
"COST_BURDEN_OWN", "B25106_OWN", "2011", "2017",
"COST_BURDEN_RENT", "B25106_RENT", "2010", "2015",
"COST_BURDEN_RENT", "B25106_RENT", "2011", "2017",
"EDUCATION", "B15002", "2010", "2015",
"EDUCATION", "B15002", "2011", "2017",
"INCOME", "T7", "2010", "2015",
"INCOME", "B19001", "2010", "2015",
"INCOME", "B19001", "2011", "2017",
"RACE", "B03002", "2010", "2015",
"RACE", "B03002", "2011", "2017",
"TENURE", "B25033", "2010", "2015",
"TENURE", "B25033", "2011", "2017",
"VALUE", "B25077", "2000", "2010",
"VALUE", "B25077", "2000", "2017",
"VALUE", "B25077", "2010", "2017",
"RENT", "B25058", "2010", "2015",
"RENT", "B25058", "2011", "2017",
"ASSESSED_VALUE", "ATV_ALL", "2005", "2010",
"ASSESSED_VALUE", "ATV_ALL", "2005", "2018",
"ASSESSED_VALUE", "ATV_ALL", "2010", "2018",
"ASSESSED_VALUE", "ATV_CONDO", "2005", "2010",
"ASSESSED_VALUE", "ATV_CONDO", "2005", "2018",
"ASSESSED_VALUE", "ATV_CONDO", "2010", "2018",
"ASSESSED_VALUE", "ATV_SF", "2005", "2010",
"ASSESSED_VALUE", "ATV_SF", "2005", "2018",
"ASSESSED_VALUE", "ATV_SF", "2010", "2018",
"SALE_PRICE", "SP_ALL", "2005", "2010",
"SALE_PRICE", "SP_ALL", "2005", "2018",
"SALE_PRICE", "SP_ALL", "2010", "2018",
"SALE_PRICE", "SP_ALL", "2013_2015", "2016_2018",
"SALE_PRICE", "SP_CONDO", "2005", "2010",
"SALE_PRICE", "SP_CONDO", "2005", "2018",
"SALE_PRICE", "SP_CONDO", "2010", "2018",
"SALE_PRICE", "SP_CONDO", "2013_2015", "2016_2018",
"SALE_PRICE", "SP_SF", "2005", "2010",
"SALE_PRICE", "SP_SF", "2005", "2018",
"SALE_PRICE", "SP_SF", "2010", "2018",
"SALE_PRICE", "SP_SF", "2013_2015", "2016_2018",
"SALE_PRICE", "SP_SQFT_ALL", "2005", "2010",
"SALE_PRICE", "SP_SQFT_ALL", "2005", "2018",
"SALE_PRICE", "SP_SQFT_ALL", "2010", "2018",
"SALE_PRICE", "SP_SQFT_ALL", "2013_2015", "2016_2018",
"SALE_PRICE", "SP_SQFT_CONDO", "2005", "2010",
"SALE_PRICE", "SP_SQFT_CONDO", "2005", "2018",
"SALE_PRICE", "SP_SQFT_CONDO", "2010", "2018",
"SALE_PRICE", "SP_SQFT_CONDO", "2013_2015", "2016_2018",
"SALE_PRICE", "SP_SQFT_SF", "2005", "2010",
"SALE_PRICE", "SP_SQFT_SF", "2005", "2018",
"SALE_PRICE", "SP_SQFT_SF", "2010", "2018",
"SALE_PRICE", "SP_SQFT_SF", "2013_2015", "2016_2018",
"SALE_RATE", "SR_ALL", "2005", "2010",
"SALE_RATE", "SR_ALL", "2005", "2018",
"SALE_RATE", "SR_ALL", "2010", "2018",
"SALE_RATE", "SR_ALL", "2013_2015", "2016_2018",
"SALE_RATE", "SR_CONDO", "2005", "2010",
"SALE_RATE", "SR_CONDO", "2005", "2018",
"SALE_RATE", "SR_CONDO", "2010", "2018",
"SALE_RATE", "SR_CONDO", "2013_2015", "2016_2018",
"SALE_RATE", "SR_SF", "2005", "2010",
"SALE_RATE", "SR_SF", "2005", "2018",
"SALE_RATE", "SR_SF", "2010", "2018",
"SALE_RATE", "SR_SF", "2013_2015", "2016_2018"
)
# PREPARE DATA --------------------------------------------------------
inds <- indicators_comparison %>%
dplyr::filter(TOPIC %in% c("DEMOGRAPHIC CHANGE", "HOUSING MARKET")) %>% # drop MISCELLANEOUS and VULNERABILITY
dplyr::filter(!DATE_RANGE_TYPE %in% "one quarter") %>% # drop the quarter spans
dplyr::mutate(DATE_GROUP_ID_JOIN = stringr::str_c("YEAR_", DATE_GROUP_ID)) %>%
dplyr::filter(!is.na(GEOGRAPHY_ID))
inds_drop_source_fields <- inds %>%
dplyr::select(-SOURCE, -VARIABLE_DESC) # these columns shouldn't be included in the CHANGE indicator
inds_long <- inds_drop_source_fields %>%
tidyr::gather(VALUE_TYPE, VALUE, ESTIMATE, MOE, COMP_THRESHOLD_VALUE, COMP_VALUE, COMP_VALUE_DESC)
change_endyears_long <- change_endyears %>%
dplyr::mutate(CHANGE_RANGE = as.character(glue::glue("YEAR_{BEGIN}_TO_YEAR_{END}"))) %>%
tidyr::gather(INDICATOR_ROLE, DATE_GROUP_ID_JOIN, BEGIN, END) %>%
dplyr::mutate(DATE_GROUP_ID_JOIN = stringr::str_c("YEAR_", DATE_GROUP_ID_JOIN))
# note: the left_join() below removes many unused DATE_GROUP_ID records
# use the function below to check these
check_unused_change_years <- function(){
anti_join(inds_long, change_endyears_long, by = c("INDICATOR",
"VARIABLE",
"DATE_GROUP_ID_JOIN")) %>%
count(INDICATOR, VARIABLE,DATE_RANGE_TYPE,DATE_GROUP_ID) %>% print(n=Inf)
}
change_endyears_wide <- change_endyears_long %>%
dplyr::left_join(inds_long, by = c("INDICATOR", # switched from left_ to inner_
"VARIABLE",
"DATE_GROUP_ID_JOIN")) %>%
dplyr::filter(! is.na(VALUE_TYPE)) %>% # remove a few records that have NA in many of the metadata fields
dplyr::select(-dplyr::starts_with("DATE")) %>%
dplyr::mutate(GROUP_ID = dplyr::group_indices(.,TOPIC, INDICATOR, VARIABLE,CHANGE_RANGE,GEOGRAPHY_ID,MEASURE_TYPE)) %>%
tidyr::unite("TYPE_ROLE_YEAR", c(VALUE_TYPE, INDICATOR_ROLE)) %>%
tidyr::spread(TYPE_ROLE_YEAR, VALUE) %>%
dplyr::select(-GROUP_ID)
change_endyears_wide_change <- change_endyears_wide %>%
dplyr::mutate(ESTIMATE_CHANGE_ABSOLUTE = ESTIMATE_END - ESTIMATE_BEGIN,
ESTIMATE_CHANGE_RATIO = (ESTIMATE_END/ESTIMATE_BEGIN) - 1, # change in pct
ESTIMATE_CHANGE_APPROPRIATE = dplyr::case_when(
MEASURE_TYPE %in% "PERCENT" ~ ESTIMATE_CHANGE_ABSOLUTE,
MEASURE_TYPE %in% c("COUNT", "MEDIAN", "TOTAL") ~ ESTIMATE_CHANGE_RATIO,
TRUE ~ NA_real_
)) %>%
dplyr::mutate(MOE_CHANGE_ABSOLUTE = purrr::pmap_dbl(list(a = MOE_END, # use pmap to vectorize this call (this works but it should be refactored/clarified at some point)
b = MOE_BEGIN,
y = ESTIMATE_END,
z = ESTIMATE_BEGIN),
~ tidycensus::moe_sum(moe = c(..1, ..2),
estimate = c(..3, ..4),
na.rm = TRUE)),
MOE_CHANGE_RATIO = tidycensus::moe_ratio(num = ESTIMATE_CHANGE_ABSOLUTE,
denom = ESTIMATE_BEGIN,
moe_num = MOE_END,
moe_denom = MOE_BEGIN),
MOE_CHANGE_APPROPRIATE = dplyr::case_when(
MEASURE_TYPE %in% "PERCENT" ~ MOE_CHANGE_ABSOLUTE,
MEASURE_TYPE %in% c("COUNT", "MEDIAN", "TOTAL") ~ MOE_CHANGE_RATIO,
TRUE ~ NA_real_
)) %>%
dplyr::mutate()
change_endyears_long <- change_endyears_wide_change %>%
dplyr::mutate(RNUM = dplyr::row_number()) %>%
dplyr::select(-dplyr::matches("BEGIN|END")) %>% # only keep the CHANGE fields (BEGIN and END will be joined later)
tidyr::gather(VALUE_MEASURE, VALUE, dplyr::matches("ESTIMATE|MOE")) %>%
tidyr::separate(VALUE_MEASURE, c("VALUE_TYPE","IND_MEASURE_TYPE", "MEASURE_TYPE_DETAIL")) %>%
tidyr::unite("MEASURE_TYPE", c(IND_MEASURE_TYPE, MEASURE_TYPE, MEASURE_TYPE_DETAIL)) %>%
tidyr::spread(VALUE_TYPE, VALUE) %>%
dplyr::select(-RNUM)
# JOIN DATE_* FIELDS ------------------------------------------------------
date_group_id_fields <- inds_drop_source_fields %>%
dplyr::select(-MEASURE_TYPE, -ESTIMATE, -MOE) %>%
dplyr::distinct()
change_endyears_all_fields <- change_endyears_long %>%
dplyr::mutate(RNUM = dplyr::row_number(),
DATE_GROUP_ID = stringr::str_remove_all(CHANGE_RANGE, "TO_")
) %>%
tidyr::separate(DATE_GROUP_ID, into = c("DATE_GROUP_ID_BEGIN", "DATE_GROUP_ID_END"),sep = "_(?=YEAR)") %>%
tidyr::gather(DATE_GROUP_ID_ROLE, DATE_GROUP_ID_JOIN, DATE_GROUP_ID_BEGIN, DATE_GROUP_ID_END) %>%
dplyr::left_join(date_group_id_fields, by = c("INDICATOR",
"VARIABLE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID_JOIN")) %>%
dplyr::mutate(DATE_GROUP_ID_ROLE = stringr::str_extract(DATE_GROUP_ID_ROLE,"BEGIN$|END$")) %>%
tidyr::gather(DATE_FIELD_TYPE, DATE_FIELD_VAL, DATE_GROUP_ID, DATE_BEGIN, DATE_END, DATE_RANGE, DATE_RANGE_TYPE) %>%
tidyr::unite("ROLE_DATE_FIELD_TYPE", c(DATE_GROUP_ID_ROLE,DATE_FIELD_TYPE)) %>%
dplyr::select(-DATE_GROUP_ID_JOIN) %>% # this messess up the spread()
tidyr::spread(ROLE_DATE_FIELD_TYPE,DATE_FIELD_VAL) %>%
dplyr::mutate(DATE_GROUP_ID = END_DATE_GROUP_ID,
DATE_BEGIN = BEGIN_DATE_BEGIN,
DATE_END = END_DATE_END,
DATE_RANGE = stringr::str_remove_all(stringr::str_c(DATE_BEGIN,DATE_END),"\\-"),
DATE_RANGE_TYPE = stringr::str_c("change (",BEGIN_DATE_RANGE_TYPE, " to ",END_DATE_RANGE_TYPE,")")) %>%
dplyr::select(-dplyr::starts_with("BEGIN"),-dplyr::starts_with("END"), -CHANGE_RANGE, -RNUM)
# CREATE SOURCE AND VARIABLE_DESC ----------------------------------------------------
change_endyears_var_desc <- change_endyears_all_fields %>%
dplyr::mutate(SOURCE = "MULTIPLE",
VARIABLE_DESC = stringr::str_c(MEASURE_TYPE, VARIABLE, sep = "_"))
# REFORMAT ----------------------------------------------------------------
# Note: this just makes sure that the columns have the same order as the indicator_template
indicators_change_ready <- indicator_template %>%
dplyr::full_join(change_endyears_var_desc,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE"))
indicators_change <- indicators_change_ready
# RETURN ------------------------------------------------------------------
return(indicators_change)
}
check_change_pct <- function(){
smooth_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.3 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- round(qnt[1] - H)
y[x > (qnt[2] + H)] <- round(qnt[2] + H)
y
}
dat <- indicators_change %>%
dplyr::filter(GEOGRAPHY_TYPE %in% "tract") %>%
dplyr::filter(!is.na(DATE_RANGE_TYPE)) %>%
dplyr::filter(stringr::str_detect(MEASURE_TYPE, "PERCENT")) %>%
dplyr::filter(stringr::str_detect(MEASURE_TYPE, "APPROPRIATE")) %>%
dplyr::group_by(VARIABLE, DATE_RANGE) %>%
dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE),
ESTIMATE_NO_OUTLIERS = smooth_outliers(ESTIMATE)) %>%
dplyr::ungroup()
dat %>%
ggplot2::ggplot(ggplot2::aes(x = ESTIMATE_NO_OUTLIERS)) +
ggplot2::geom_histogram() +
ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
ggplot2::scale_x_continuous(labels = scale_pct_points) +
ggplot2::facet_grid(DATE_RANGE ~ VARIABLE, scales = "free")
}
check_change_median <- function(){
smooth_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.3 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- round(qnt[1] - H)
y[x > (qnt[2] + H)] <- round(qnt[2] + H)
y
}
dat <- indicators_change %>%
dplyr::filter(GEOGRAPHY_TYPE %in% "tract") %>%
dplyr::filter(!is.na(DATE_RANGE_TYPE)) %>%
dplyr::filter(stringr::str_detect(MEASURE_TYPE, "MEDIAN")) %>%
dplyr::filter(stringr::str_detect(MEASURE_TYPE, "APPROPRIATE")) %>%
dplyr::group_by(VARIABLE, DATE_RANGE) %>%
dplyr::mutate(MEDIAN = median(ESTIMATE,na.rm = TRUE),
ESTIMATE_NO_OUTLIERS = smooth_outliers(ESTIMATE)) %>%
dplyr::ungroup()
dat %>%
ggplot2::ggplot(ggplot2::aes(x = ESTIMATE)) +
ggplot2::geom_histogram() +
ggplot2::geom_vline(ggplot2::aes(xintercept=MEDIAN), size=0.5, color = "red") +
ggplot2::scale_x_continuous(labels = scales::percent) +
ggplot2::facet_grid(DATE_RANGE ~ VARIABLE, scales = "free")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.