#' @title Make The Change in Comparison Indicators
#' @description Description
#' @param indicators_in_models desc
#' @param model_table_production desc
#' @param change_dategroupid_long desc
#' @param indicator_value_template desc
#' @return a `tibble`
#' @export
make_indicators_comparison_of_change <- function(indicators_in_models,
model_table_production,
change_dategroupid_long,
indicator_value_template){
# NOTE --------------------------------------------------------------------
# This applies to demographic change and housing market indicators
# PREPARE DATA ------------------------------------------------------------
ind_value_fields <- indicator_value_template %>%
dplyr::full_join(indicators_in_models,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"DIMENSION",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE"))
inds_demo_housing <- ind_value_fields %>%
dplyr::rename(DATE_GROUP_ID_JOIN = DATE_GROUP_ID) %>%
dplyr::filter(DIMENSION %in% c("DEMOGRAPHIC_CHANGE", "HOUSING_MARKET")) %>%
dplyr::filter(! is.na(GEOGRAPHY_ID)) %>% # for some unknown reason there are NA GEOGRAPHY_IDs in the ASSESSOR rows
dplyr::select(-SOURCE, -VARIABLE_DESC) %>% # these columns shouldn't be included in the CHANGE indicator
drop_na_cols() # drop the empty columns
inds_demo_housing_long <- inds_demo_housing %>%
tidyr::gather(VALUE_TYPE, VALUE, c(ESTIMATE, MOE))
# JOIN + SPREAD -----------------------------------------------------------
inds_demo_housing_dategroupid_join <- change_dategroupid_long %>%
dplyr::left_join(inds_demo_housing_long,
by = c("DIMENSION",
"INDICATOR",
"VARIABLE",
"DATE_GROUP_ID_JOIN"))
inds_wide <- inds_demo_housing_dategroupid_join %>%
#drop fields that will impede spread()
dplyr::select(-DATE_GROUP_ID_JOIN, -DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>%
dplyr::mutate(DATE_TYPE = stringr::str_extract(DATE_TYPE, "BEGIN|END")) %>%
# GROUP_ID in preparation for spread()
dplyr::mutate(GROUP_ID = dplyr::group_indices(.,DIMENSION, INDICATOR, VARIABLE, DATE_GROUP_ID, GEOGRAPHY_ID, MEASURE_TYPE)) %>%
tidyr::unite("TYPE_ROLE_YEAR", c(VALUE_TYPE, DATE_TYPE)) %>%
tidyr::spread(TYPE_ROLE_YEAR, VALUE) %>%
drop_na_cols() %>% # drop NA_BEGIN and NA_END
dplyr::select(-GROUP_ID ) %>%
dplyr::mutate_at(dplyr::vars(dplyr::matches("ESTIMATE|MOE")),as.numeric)
# CALCULATE CHANGE --------------------------------------------------------
change_demo_housing <- inds_wide %>%
dplyr::mutate(DIFFERENCE_ABSOLUTE = ESTIMATE_END - ESTIMATE_BEGIN,
DIFFERENCE_RATIO = (ESTIMATE_END/ESTIMATE_BEGIN) - 1, # change in pct
DIFFERENCE_APPROPRIATE = dplyr::case_when(
MEASURE_TYPE %in% "PERCENT" ~ DIFFERENCE_ABSOLUTE,
MEASURE_TYPE %in% c("COUNT", "MEDIAN", "TOTAL") ~ DIFFERENCE_RATIO,
TRUE ~ NA_real_
)) %>%
dplyr::mutate(DIFFERENCE_MOE_ABSOLUTE = purrr::pmap_dbl(list(a = MOE_END, # use pmap to vectorize this call (this works but it should be refactored/clarified at some point)
b = MOE_BEGIN,
y = ESTIMATE_END,
z = ESTIMATE_BEGIN),
~ tidycensus::moe_sum(moe = c(..1, ..2),
estimate = c(..3, ..4),
na.rm = TRUE)),
DIFFERENCE_MOE_RATIO = tidycensus::moe_ratio(num = DIFFERENCE_ABSOLUTE,
denom = ESTIMATE_BEGIN,
moe_num = MOE_END,
moe_denom = MOE_BEGIN),
DIFFERENCE_MOE_APPROPRIATE = dplyr::case_when(
MEASURE_TYPE %in% "PERCENT" ~ DIFFERENCE_MOE_ABSOLUTE,
MEASURE_TYPE %in% c("COUNT", "MEDIAN", "TOTAL") ~ DIFFERENCE_MOE_RATIO,
TRUE ~ NA_real_
))
# CREATE COMPARISON FUNCTION ----------------------------------------------
get_comparison_fields <- function(data, dimension, measure_type){
# IF MEASURE_TYPE ISN'T PERCENT OR MEDIAN ---------------------------------
if(! measure_type %in% c("PERCENT", "MEDIAN")){
return(data)
}
# COUNTY ------------------------------------------------------------------
df_county <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("county"))
# IF DIMENSION %in% DEMOGRAPHIC CHANGE ---------------------------------------------
if(dimension %in% "DEMOGRAPHIC_CHANGE"){
# Note: DEMOGRAPHIC_CHANGE contains mostly PERCENT indicators but there is
# one MEDIAN indicator (INCOME)
county_median <- data %>% dplyr::filter(GEOGRAPHY_TYPE %in% "county") %>% dplyr::pull(DIFFERENCE_APPROPRIATE)
county_median_moe <- data %>% dplyr::filter(GEOGRAPHY_TYPE %in% "county") %>% dplyr::pull(DIFFERENCE_MOE_APPROPRIATE)
df_community_tract <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("tract", "community")) %>%
dplyr::mutate(CHANGE_THRESHOLD = county_median) %>%
dplyr::mutate(CHANGE = plyr::round_any(DIFFERENCE_APPROPRIATE - CHANGE_THRESHOLD, accuracy = .001),
CHANGE_MOE = purrr::pmap_dbl(list(a = county_median_moe, # use pmap to vectorize this call (this works but it should be refactored/clarified at some point)
b = DIFFERENCE_MOE_APPROPRIATE,
y = CHANGE_THRESHOLD,
z = DIFFERENCE_APPROPRIATE),
~ tidycensus::moe_sum(moe = c(..1, ..2),
estimate = c(..3, ..4),
na.rm = TRUE)),
CHANGE_DESC = dplyr::case_when(
CHANGE>= 0 ~ "GREATER THAN / EQUAL TO MEDIAN",
TRUE ~ "LESS THAN MEDIAN"
),
CHANGE_THRESHOLD,
CHANGE_LGL = CHANGE_DESC %in% "GREATER THAN / EQUAL TO MEDIAN"
)
df_county_community_tract <- list(df_county, df_community_tract) %>%
purrr::map_dfr(c)
return(df_county_community_tract)
}
# IF DIMENSION %in% HOUSING MARKET --------------------------------------------
if(dimension %in% "HOUSING_MARKET"){
get_q4_lower <- function(x) {
q4_lower <- stats::quantile(x,probs = c(0,.6,1), na.rm = TRUE)[[2]]
q4_lower_rounded <- plyr::round_any(q4_lower, accuracy = .0001)
return(q4_lower_rounded)
}
county_q4_lower <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% "tract") %>%
dplyr::pull("DIFFERENCE_APPROPRIATE") %>% get_q4_lower()
df_tract <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("tract")) %>%
dplyr::mutate(CHANGE_THRESHOLD = county_q4_lower) %>% # create the threshold value
dplyr::mutate(CHANGE = as.double(dplyr::ntile(DIFFERENCE_APPROPRIATE, n = 5)), # should be double not integer
CHANGE_MOE = NA_real_, # how do you calculate the MOE of a quantile?
CHANGE_DESC = dplyr::case_when(
CHANGE <= 3 ~ "LOW/MED",
TRUE ~ "HIGH"
),
CHANGE_THRESHOLD,
CHANGE_LGL = CHANGE_DESC %in% "HIGH"
)
df_community <- data %>%
dplyr::filter(GEOGRAPHY_TYPE %in% c("community")) %>%
dplyr::mutate(CHANGE_THRESHOLD = county_q4_lower) %>% # create the threshold value
dplyr::mutate(CHANGE = NA_real_, # should be double not integer # also, don't calculate the quintile because the data only contain the "community" aggregations (not the tracts)
CHANGE_MOE = NA_real_, # how do you calculate the MOE of a quantile?
CHANGE_DESC = dplyr::case_when(
DIFFERENCE_APPROPRIATE <= county_q4_lower ~ "LOW/MED",
TRUE ~ "HIGH"
),
CHANGE_THRESHOLD,
CHANGE_LGL = CHANGE_DESC %in% "HIGH"
)
df_county_community_tract <- list(df_county, df_community, df_tract) %>%
purrr::map_dfr(c)
return(df_county_community_tract)
}
# IF THERE'S A PROBLEM ----------------------------------------------------
stop("Something went wrong with the tests in this function!")
}
# CALCULATE COMPARISON OF CHANGE ------------------------------------------
comparison_of_change_demo_housing <- change_demo_housing %>%
tidyr::nest(-DIMENSION, -INDICATOR, -VARIABLE, -DATE_GROUP_ID, -MEASURE_TYPE) %>%
dplyr::mutate(COMP_FIELDS = purrr::pmap(list("data" = data,
"dimension" = DIMENSION,
"measure_type" = MEASURE_TYPE), get_comparison_fields)) %>%
dplyr::select(-data) %>%
tidyr::unnest()
# VISUALIZE DATA ----------------------------------------------------------
check_comparison_of_change_demo_housing_na <- function(){
# check the NA's first
# note: the only records with NA in INDICATOR_TYPE_MODEL should be 'county'
comparison_of_change_demo_housing %>% count(GEOGRAPHY_TYPE,MEASURE_TYPE, is.na(CHANGE))
}
view_comparison_of_change_demo_housing_by_dategroupid <- function(){
# check the change types (INDICATOR_TYPE_MODEL)
comparison_of_change_demo_housing %>%
dplyr::filter(! is.na(INDICATOR_TYPE_MODEL)) %>%
dplyr::count(DATE_GROUP_ID, INDICATOR, VARIABLE, INDICATOR_TYPE_MODEL) %>% View()
}
view_comparison_of_change_demo_housing_by_ind <- function(){
# check the change types (INDICATOR_TYPE_MODEL)
comparison_of_change_demo_housing %>%
dplyr::filter(! is.na(INDICATOR_TYPE_MODEL)) %>%
dplyr::count(INDICATOR, VARIABLE, DATE_GROUP_ID, INDICATOR_TYPE_MODEL) %>% View()
}
# JOIN DATE_* FIELDS ------------------------------------------------------
date_group_id_fields <- inds_demo_housing %>%
dplyr::select(-MEASURE_TYPE, -dplyr::matches("ESTIMATE|MOE|RELATIVE")) %>%
dplyr::distinct()
change_dategroupid_all_fields <- comparison_of_change_demo_housing %>%
dplyr::mutate(DATE_GROUP_ID_SEPARATE = DATE_GROUP_ID,
RNUM = dplyr::row_number()) %>%
tidyr::separate(DATE_GROUP_ID_SEPARATE, into = c("BEGIN_DATE_GROUP_ID", "END_DATE_GROUP_ID"),sep = "_TO_") %>%
tidyr::gather(DATE_TYPE, DATE_GROUP_ID_JOIN, c(BEGIN_DATE_GROUP_ID, END_DATE_GROUP_ID)) %>%
dplyr::left_join(date_group_id_fields,
by = c("DIMENSION",
"INDICATOR",
"VARIABLE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID_JOIN")) %>%
dplyr::mutate(DATE_TYPE = stringr::str_extract(DATE_TYPE,"^BEGIN|^END")) %>%
dplyr::rename(DATE_ROLE = DATE_TYPE) %>%
tidyr::gather(DATE_FIELD_TYPE, DATE_FIELD_VAL, DATE_GROUP_ID, DATE_BEGIN, DATE_END, DATE_RANGE, DATE_RANGE_TYPE) %>%
tidyr::unite("ROLE_DATE_FIELD_TYPE", c(DATE_ROLE, DATE_FIELD_TYPE)) %>%
dplyr::select(-DATE_GROUP_ID_JOIN) %>% # this messess up the spread()
tidyr::spread(ROLE_DATE_FIELD_TYPE,DATE_FIELD_VAL) %>%
dplyr::mutate(DATE_GROUP_ID = END_DATE_GROUP_ID,
DATE_BEGIN = BEGIN_DATE_BEGIN,
DATE_END = END_DATE_END,
DATE_RANGE = stringr::str_remove_all(stringr::str_c(DATE_BEGIN,DATE_END),"\\-"),
DATE_RANGE_TYPE = stringr::str_c("change (",BEGIN_DATE_RANGE_TYPE, " to ",END_DATE_RANGE_TYPE,")")) %>%
dplyr::select(-dplyr::starts_with("BEGIN"),
-dplyr::starts_with("END"),
-RNUM)
# CREATE SOURCE AND VARIABLE_DESC ----------------------------------------------------
change_dategroupid_var_desc <- change_dategroupid_all_fields %>%
dplyr::mutate(SOURCE = "MULTIPLE",
VARIABLE_DESC = stringr::str_c(MEASURE_TYPE, VARIABLE, sep = "_"))
# DROP DIFFERENCE_ABSOLUTE & DIFFERENCE_RATIO -----------------------------
change_diff_appropriate_only <- change_dategroupid_var_desc %>%
# rename DIFFERENCE_APPROPRIATE as DIFFERENCE (this field will be kept)
dplyr::rename(DIFFERENCE = DIFFERENCE_APPROPRIATE,
DIFFERENCE_MOE = DIFFERENCE_MOE_APPROPRIATE) %>%
dplyr::select(-dplyr::matches("ABSOLUTE|RATIO|APPROPRIATE")) # drop the old DIFFERENCE_* fields
# REFORMAT ----------------------------------------------------------------
# Note: this just makes sure that the columns have the same order as the indicator_template
indicators_comparison_of_change_ready <- indicator_value_template %>%
dplyr::full_join(change_diff_appropriate_only,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"DIMENSION",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE_BEGIN",
"ESTIMATE_END",
"MOE_BEGIN",
"MOE_END",
"DIFFERENCE",
"DIFFERENCE_MOE",
"CHANGE",
"CHANGE_MOE",
"CHANGE_DESC",
"CHANGE_THRESHOLD",
"CHANGE_LGL"))
indicators_comparison_of_change <- indicators_comparison_of_change_ready
# RETURN ------------------------------------------------------------------
return(indicators_comparison_of_change)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.